Cargando…
pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet
The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study f...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445472/ https://www.ncbi.nlm.nih.gov/pubmed/37621442 http://dx.doi.org/10.1039/d3sc02777e |
_version_ | 1785094178985738240 |
---|---|
author | Rabelo, Renato Toma, Luminita Moliner, Nicolás Julve, Miguel Lloret, Francesc Inclán, Mario García-España, Enrique Pasán, Jorge Ruiz-García, Rafael Cano, Joan |
author_facet | Rabelo, Renato Toma, Luminita Moliner, Nicolás Julve, Miguel Lloret, Francesc Inclán, Mario García-España, Enrique Pasán, Jorge Ruiz-García, Rafael Cano, Joan |
author_sort | Rabelo, Renato |
collection | PubMed |
description | The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt(ii) complexes of formula {[Co(II)(HL)(2)][Co(II)(HL)L]}(ClO(4))(3)·9H(2)O (1) and [Co(II)L(2)]·5H(2)O (2) [HL = 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state. In this last case, the thermal-assisted spin transition coexists with the field-induced magnetisation blockage of “faster” or “slower” relaxing low-spin Co(II) ions in 1 or 2, respectively. In addition, pH-reversible control of the acid-base equilibrium among dicationic protonated, cationic hemiprotonated, and neutral deprotonated forms in solution enhances luminescence in the UV region. Besides, the reversibility of the one-electron oxidation of the paramagnetic low-spin Co(II) into the diamagnetic low-spin Co(III) ion is partially lost and completely restored by pH decreasing and increasing. The fine-tuning of the optical, redox, and magnetic properties in this novel class of pH-responsive, spin crossover molecular nanomagnets offers fascinating possibilities for advanced multifunctional and multiresponsive magnetic devices for molecular spintronics and quantum computing such as pH-effect spin quantum transformers. |
format | Online Article Text |
id | pubmed-10445472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-104454722023-08-24 pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet Rabelo, Renato Toma, Luminita Moliner, Nicolás Julve, Miguel Lloret, Francesc Inclán, Mario García-España, Enrique Pasán, Jorge Ruiz-García, Rafael Cano, Joan Chem Sci Chemistry The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt(ii) complexes of formula {[Co(II)(HL)(2)][Co(II)(HL)L]}(ClO(4))(3)·9H(2)O (1) and [Co(II)L(2)]·5H(2)O (2) [HL = 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state. In this last case, the thermal-assisted spin transition coexists with the field-induced magnetisation blockage of “faster” or “slower” relaxing low-spin Co(II) ions in 1 or 2, respectively. In addition, pH-reversible control of the acid-base equilibrium among dicationic protonated, cationic hemiprotonated, and neutral deprotonated forms in solution enhances luminescence in the UV region. Besides, the reversibility of the one-electron oxidation of the paramagnetic low-spin Co(II) into the diamagnetic low-spin Co(III) ion is partially lost and completely restored by pH decreasing and increasing. The fine-tuning of the optical, redox, and magnetic properties in this novel class of pH-responsive, spin crossover molecular nanomagnets offers fascinating possibilities for advanced multifunctional and multiresponsive magnetic devices for molecular spintronics and quantum computing such as pH-effect spin quantum transformers. The Royal Society of Chemistry 2023-07-27 /pmc/articles/PMC10445472/ /pubmed/37621442 http://dx.doi.org/10.1039/d3sc02777e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Rabelo, Renato Toma, Luminita Moliner, Nicolás Julve, Miguel Lloret, Francesc Inclán, Mario García-España, Enrique Pasán, Jorge Ruiz-García, Rafael Cano, Joan pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet |
title | pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet |
title_full | pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet |
title_fullStr | pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet |
title_full_unstemmed | pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet |
title_short | pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet |
title_sort | ph-switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445472/ https://www.ncbi.nlm.nih.gov/pubmed/37621442 http://dx.doi.org/10.1039/d3sc02777e |
work_keys_str_mv | AT rabelorenato phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT tomaluminita phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT molinernicolas phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT julvemiguel phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT lloretfrancesc phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT inclanmario phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT garciaespanaenrique phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT pasanjorge phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT ruizgarciarafael phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet AT canojoan phswitchingoftheluminescentredoxandmagneticpropertiesinaspincrossovercobaltiimolecularnanomagnet |