Cargando…
Identifying potential circulating miRNA biomarkers for the diagnosis and prediction of ovarian cancer using machine-learning approach: application of Boruta
INTRODUCTION: In gynecologic oncology, ovarian cancer is a great clinical challenge. Because of the lack of typical symptoms and effective biomarkers for noninvasive screening, most patients develop advanced-stage ovarian cancer by the time of diagnosis. MicroRNAs (miRNAs) are a type of non-coding R...
Autores principales: | Hamidi, Farzaneh, Gilani, Neda, Arabi Belaghi, Reza, Yaghoobi, Hanif, Babaei, Esmaeil, Sarbakhsh, Parvin, Malakouti, Jamileh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445490/ https://www.ncbi.nlm.nih.gov/pubmed/37621964 http://dx.doi.org/10.3389/fdgth.2023.1187578 |
Ejemplares similares
-
Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence
por: Hamidi, Farzaneh, et al.
Publicado: (2021) -
Identifying Potential miRNA Biomarkers for Gastric Cancer Diagnosis Using Machine Learning Variable Selection Approach
por: Gilani, Neda, et al.
Publicado: (2022) -
The Effect of B-Cell Lymphoma 2 and BCL2-Associated X Polymorphisms on the Survival of Acute Lymphoblastic Leukemia Patients: Application of Frailty Survival Models
por: Nikmohammadi, Navideh, et al.
Publicado: (2022) -
A diabetes prediction model based on Boruta feature selection and ensemble learning
por: Zhou, Hongfang, et al.
Publicado: (2023) -
Prediction of preterm birth in nulliparous women using logistic regression and machine learning
por: Arabi Belaghi, Reza, et al.
Publicado: (2021)