Cargando…
DeePMD-kit v2: A software package for deep potential models
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material scien...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445636/ https://www.ncbi.nlm.nih.gov/pubmed/37526163 http://dx.doi.org/10.1063/5.0155600 |
_version_ | 1785094217089941504 |
---|---|
author | Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li’ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E. A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. E, Weinan Car, Roberto Zhang, Linfeng Wang, Han |
author_facet | Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li’ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E. A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. E, Weinan Car, Roberto Zhang, Linfeng Wang, Han |
author_sort | Zeng, Jinzhe |
collection | PubMed |
description | DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments. |
format | Online Article Text |
id | pubmed-10445636 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | AIP Publishing LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-104456362023-08-24 DeePMD-kit v2: A software package for deep potential models Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li’ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E. A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. E, Weinan Car, Roberto Zhang, Linfeng Wang, Han J Chem Phys ARTICLES DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments. AIP Publishing LLC 2023-08-07 2023-08-01 /pmc/articles/PMC10445636/ /pubmed/37526163 http://dx.doi.org/10.1063/5.0155600 Text en © 2023 Author(s). https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | ARTICLES Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li’ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E. A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. E, Weinan Car, Roberto Zhang, Linfeng Wang, Han DeePMD-kit v2: A software package for deep potential models |
title | DeePMD-kit v2: A software package for deep potential models |
title_full | DeePMD-kit v2: A software package for deep potential models |
title_fullStr | DeePMD-kit v2: A software package for deep potential models |
title_full_unstemmed | DeePMD-kit v2: A software package for deep potential models |
title_short | DeePMD-kit v2: A software package for deep potential models |
title_sort | deepmd-kit v2: a software package for deep potential models |
topic | ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445636/ https://www.ncbi.nlm.nih.gov/pubmed/37526163 http://dx.doi.org/10.1063/5.0155600 |
work_keys_str_mv | AT zengjinzhe deepmdkitv2asoftwarepackagefordeeppotentialmodels AT zhangduo deepmdkitv2asoftwarepackagefordeeppotentialmodels AT ludenghui deepmdkitv2asoftwarepackagefordeeppotentialmodels AT mopinghui deepmdkitv2asoftwarepackagefordeeppotentialmodels AT lizeyu deepmdkitv2asoftwarepackagefordeeppotentialmodels AT chenyixiao deepmdkitv2asoftwarepackagefordeeppotentialmodels AT rynikmarian deepmdkitv2asoftwarepackagefordeeppotentialmodels AT huangliang deepmdkitv2asoftwarepackagefordeeppotentialmodels AT liziyao deepmdkitv2asoftwarepackagefordeeppotentialmodels AT shishaochen deepmdkitv2asoftwarepackagefordeeppotentialmodels AT wangyingze deepmdkitv2asoftwarepackagefordeeppotentialmodels AT yehaotian deepmdkitv2asoftwarepackagefordeeppotentialmodels AT tuoping deepmdkitv2asoftwarepackagefordeeppotentialmodels AT yangjiabin deepmdkitv2asoftwarepackagefordeeppotentialmodels AT dingye deepmdkitv2asoftwarepackagefordeeppotentialmodels AT liyifan deepmdkitv2asoftwarepackagefordeeppotentialmodels AT tisidavide deepmdkitv2asoftwarepackagefordeeppotentialmodels AT zengqiyu deepmdkitv2asoftwarepackagefordeeppotentialmodels AT baohan deepmdkitv2asoftwarepackagefordeeppotentialmodels AT xiayu deepmdkitv2asoftwarepackagefordeeppotentialmodels AT huangjiameng deepmdkitv2asoftwarepackagefordeeppotentialmodels AT muraokakoki deepmdkitv2asoftwarepackagefordeeppotentialmodels AT wangyibo deepmdkitv2asoftwarepackagefordeeppotentialmodels AT changjunhan deepmdkitv2asoftwarepackagefordeeppotentialmodels AT yuanfengbo deepmdkitv2asoftwarepackagefordeeppotentialmodels AT boresigbjørnløland deepmdkitv2asoftwarepackagefordeeppotentialmodels AT caichun deepmdkitv2asoftwarepackagefordeeppotentialmodels AT linyinnian deepmdkitv2asoftwarepackagefordeeppotentialmodels AT wangbo deepmdkitv2asoftwarepackagefordeeppotentialmodels AT xujiayan deepmdkitv2asoftwarepackagefordeeppotentialmodels AT zhujiaxin deepmdkitv2asoftwarepackagefordeeppotentialmodels AT luochenxing deepmdkitv2asoftwarepackagefordeeppotentialmodels AT zhangyuzhi deepmdkitv2asoftwarepackagefordeeppotentialmodels AT goodallrhysea deepmdkitv2asoftwarepackagefordeeppotentialmodels AT liangwenshuo deepmdkitv2asoftwarepackagefordeeppotentialmodels AT singhanuragkumar deepmdkitv2asoftwarepackagefordeeppotentialmodels AT yaosikai deepmdkitv2asoftwarepackagefordeeppotentialmodels AT zhangjingchao deepmdkitv2asoftwarepackagefordeeppotentialmodels AT wentzcovitchrenata deepmdkitv2asoftwarepackagefordeeppotentialmodels AT hanjiequn deepmdkitv2asoftwarepackagefordeeppotentialmodels AT liujie deepmdkitv2asoftwarepackagefordeeppotentialmodels AT jiaweile deepmdkitv2asoftwarepackagefordeeppotentialmodels AT yorkdarrinm deepmdkitv2asoftwarepackagefordeeppotentialmodels AT eweinan deepmdkitv2asoftwarepackagefordeeppotentialmodels AT carroberto deepmdkitv2asoftwarepackagefordeeppotentialmodels AT zhanglinfeng deepmdkitv2asoftwarepackagefordeeppotentialmodels AT wanghan deepmdkitv2asoftwarepackagefordeeppotentialmodels |