Cargando…
Overcoming field variability: unsupervised domain adaptation for enhanced crop-weed recognition in diverse farmlands
Recent developments in deep learning-based automatic weeding systems have shown promise for unmanned weed eradication. However, accurately distinguishing between crops and weeds in varying field conditions remains a challenge for these systems, as performance deteriorates when applied to new or diff...
Autores principales: | Ilyas, Talha, Lee, Jonghoon, Won, Okjae, Jeong, Yongchae, Kim, Hyongsuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445656/ https://www.ncbi.nlm.nih.gov/pubmed/37621880 http://dx.doi.org/10.3389/fpls.2023.1234616 |
Ejemplares similares
-
A pixel-level coarse-to-fine image segmentation labelling algorithm
por: Lee, Jonghyeok, et al.
Publicado: (2022) -
Learning Semantic Graphics Using Convolutional Encoder–Decoder Network for Autonomous Weeding in Paddy
por: Adhikari, Shyam Prasad, et al.
Publicado: (2019) -
DAM: Hierarchical Adaptive Feature Selection Using Convolution Encoder Decoder Network for Strawberry Segmentation
por: Ilyas, Talha, et al.
Publicado: (2021) -
A New Deep Learning-based Dynamic Paradigm Towards Open-World Plant Disease Detection
por: Dong, Jiuqing, et al.
Publicado: (2023) -
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
por: Wang, Aichen, et al.
Publicado: (2022)