Cargando…
Local invertibility and sensitivity of atomic structure-feature mappings
Background: The increasingly common applications of machine-learning schemes to atomic-scale simulations have triggered efforts to better understand the mathematical properties of the mapping between the Cartesian coordinates of the atoms and the variety of representations that can be used to conver...
Autores principales: | Pozdnyakov, Sergey N., Zhang, Liwei, Ortner, Christoph, Csányi, Gábor, Ceriotti, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445828/ https://www.ncbi.nlm.nih.gov/pubmed/37645092 http://dx.doi.org/10.12688/openreseurope.14156.1 |
Ejemplares similares
-
Preconditioners for the geometry optimisation and saddle point search of molecular systems
por: Mones, Letif, et al.
Publicado: (2018) -
Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: Beyond RMSE
por: Kovács, Dávid Péter, et al.
Publicado: (2021) -
Inverting the structure–property map of truss metamaterials by deep learning
por: Bastek, Jan-Hendrik, et al.
Publicado: (2021) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
por: Bernstein, Noam, et al.
Publicado: (2019)