Cargando…
The parallels between particle induced lung overload and particle induced periprosthetic osteolysis (PPOL)
Background: When particles deposit for instance in the lung after inhalation or in the hip joint after local release from a hip implant material they can initiate a defense response. Even though these particles originate from inert materials such as polyethylene (PE) or titanium, they may cause harm...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445866/ https://www.ncbi.nlm.nih.gov/pubmed/37645132 http://dx.doi.org/10.12688/openreseurope.13264.2 |
Sumario: | Background: When particles deposit for instance in the lung after inhalation or in the hip joint after local release from a hip implant material they can initiate a defense response. Even though these particles originate from inert materials such as polyethylene (PE) or titanium, they may cause harm when reaching high local doses and overwhelming local defense mechanisms. Main body: This paper describes the parallels between adverse outcome pathways (AOP) and particle properties in lung overload and periprosthetic osteolysis (PPOL). It is noted that in both outcomes in different organs , the macrophage and cytokine orchestrated persistent inflammation is the common driver of events, in the bone leading to loss of bone density and structure, and in the lung leading to fibrosis and cancer. Most evidence on lung overload and its AOP is derived from chronic inhalation studies in rats, and the relevance to man is questioned. In PPOL, the paradigms and metrics are based on human clinical data, with additional insights generated from in vitro and animal studies. In both organ pathologies the total volume of particle deposition has been used to set threshold values for the onset of pathological alterations. The estimated clinical threshold for PPOL of 130 mg/ml is much higher than the amount to cause lung overload in the rat (10 mg/ml),although the threshold in PPOL is not necessarily synonymous to particle overload. Conclusions: The paradigms developed in two very different areas of particle response in the human body have major similarities in their AOP. Connecting the clinical evidence in PPOL to lung overload challenges relevance of rat inhalation studies to the human lung cancer hazard. . |
---|