Cargando…

pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios

The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mit...

Descripción completa

Detalles Bibliográficos
Autores principales: Huppmann, Daniel, Gidden, Matthew J., Nicholls, Zebedee, Hörsch, Jonas, Lamboll, Robin, Kishimoto, Paul N., Burandt, Thorsten, Fricko, Oliver, Byers, Edward, Kikstra, Jarmo, Brinkerink, Maarten, Budzinski, Maik, Maczek, Florian, Zwickl-Bernhard, Sebastian, Welder, Lara, Álvarez Quispe, Erik Francisco, Smith, Christopher J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446008/
https://www.ncbi.nlm.nih.gov/pubmed/37645194
http://dx.doi.org/10.12688/openreseurope.13633.2
_version_ 1785094306433859584
author Huppmann, Daniel
Gidden, Matthew J.
Nicholls, Zebedee
Hörsch, Jonas
Lamboll, Robin
Kishimoto, Paul N.
Burandt, Thorsten
Fricko, Oliver
Byers, Edward
Kikstra, Jarmo
Brinkerink, Maarten
Budzinski, Maik
Maczek, Florian
Zwickl-Bernhard, Sebastian
Welder, Lara
Álvarez Quispe, Erik Francisco
Smith, Christopher J.
author_facet Huppmann, Daniel
Gidden, Matthew J.
Nicholls, Zebedee
Hörsch, Jonas
Lamboll, Robin
Kishimoto, Paul N.
Burandt, Thorsten
Fricko, Oliver
Byers, Edward
Kikstra, Jarmo
Brinkerink, Maarten
Budzinski, Maik
Maczek, Florian
Zwickl-Bernhard, Sebastian
Welder, Lara
Álvarez Quispe, Erik Francisco
Smith, Christopher J.
author_sort Huppmann, Daniel
collection PubMed
description The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.
format Online
Article
Text
id pubmed-10446008
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-104460082023-08-29 pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios Huppmann, Daniel Gidden, Matthew J. Nicholls, Zebedee Hörsch, Jonas Lamboll, Robin Kishimoto, Paul N. Burandt, Thorsten Fricko, Oliver Byers, Edward Kikstra, Jarmo Brinkerink, Maarten Budzinski, Maik Maczek, Florian Zwickl-Bernhard, Sebastian Welder, Lara Álvarez Quispe, Erik Francisco Smith, Christopher J. Open Res Eur Software Tool Article The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications. F1000 Research Limited 2021-09-01 /pmc/articles/PMC10446008/ /pubmed/37645194 http://dx.doi.org/10.12688/openreseurope.13633.2 Text en Copyright: © 2021 Huppmann D et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Software Tool Article
Huppmann, Daniel
Gidden, Matthew J.
Nicholls, Zebedee
Hörsch, Jonas
Lamboll, Robin
Kishimoto, Paul N.
Burandt, Thorsten
Fricko, Oliver
Byers, Edward
Kikstra, Jarmo
Brinkerink, Maarten
Budzinski, Maik
Maczek, Florian
Zwickl-Bernhard, Sebastian
Welder, Lara
Álvarez Quispe, Erik Francisco
Smith, Christopher J.
pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios
title pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios
title_full pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios
title_fullStr pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios
title_full_unstemmed pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios
title_short pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios
title_sort pyam: analysis and visualisation of integrated assessment and macro-energy scenarios
topic Software Tool Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446008/
https://www.ncbi.nlm.nih.gov/pubmed/37645194
http://dx.doi.org/10.12688/openreseurope.13633.2
work_keys_str_mv AT huppmanndaniel pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT giddenmatthewj pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT nichollszebedee pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT horschjonas pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT lambollrobin pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT kishimotopauln pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT burandtthorsten pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT frickooliver pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT byersedward pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT kikstrajarmo pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT brinkerinkmaarten pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT budzinskimaik pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT maczekflorian pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT zwicklbernhardsebastian pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT welderlara pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT alvarezquispeerikfrancisco pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios
AT smithchristopherj pyamanalysisandvisualisationofintegratedassessmentandmacroenergyscenarios