Cargando…
Training neural networks on domain randomized simulations for ultrasonic inspection
To overcome the data scarcity problem of machine learning for nondestructive testing, data augmentation is a commonly used strategy. We propose a method to enable training of neural networks exclusively on simulated data. Simulations not only provide a scalable way to generate and access training da...
Autores principales: | Schlachter, Klaus, Felsner, Kastor, Zambal, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446096/ https://www.ncbi.nlm.nih.gov/pubmed/37645298 http://dx.doi.org/10.12688/openreseurope.14358.2 |
Ejemplares similares
-
A novel ultrasonic inspection method of the heat exchangers based on circumferential waves and deep neural networks
por: ugli Malikov, Azamatjon Kakhramon, et al.
Publicado: (2023) -
Domain-adaptive neural networks improve cross-species prediction of transcription factor binding
por: Cochran, Kelly, et al.
Publicado: (2022) -
Neuronify: An Educational Simulator for Neural Circuits
por: Dragly, Svenn-Arne, et al.
Publicado: (2017) -
Rapid automated 3-D pose estimation of larval zebrafish using a physical model-trained neural network
por: Ravan, Aniket, et al.
Publicado: (2023) -
Distinguishing Felsenstein Zone from Farris Zone Using Neural Networks
por: Leuchtenberger, Alina F, et al.
Publicado: (2020)