Cargando…
Machine learning for predicting breast-conserving surgery candidates after neoadjuvant chemotherapy based on DCE-MRI
PURPOSE: This study aimed to investigate a machine learning method for predicting breast-conserving surgery (BCS) candidates, from patients who received neoadjuvant chemotherapy (NAC) by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) obtained before and after NAC. MATERIALS AND...
Autores principales: | Chen, Zhigeng, Huang, Manxia, Lyu, Jianbo, Qi, Xin, He, Fengtai, Li, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446166/ https://www.ncbi.nlm.nih.gov/pubmed/37621690 http://dx.doi.org/10.3389/fonc.2023.1174843 |
Ejemplares similares
-
Predictive value of DCE-MRI and IVIM-DWI in osteosarcoma patients with neoadjuvant chemotherapy
por: Xia, Xibin, et al.
Publicado: (2022) -
3T DCE-MRI Radiomics Improves Predictive Models of Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
por: Montemezzi, Stefania, et al.
Publicado: (2021) -
Pretreatment DCE-MRI-Based Deep Learning Outperforms Radiomics Analysis in Predicting Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
por: Peng, Yunsong, et al.
Publicado: (2022) -
The Diagnostic Performance of DCE-MRI in Evaluating the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer: A Meta-Analysis
por: Cheng, Qingqing, et al.
Publicado: (2020) -
Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer
por: Li, Yuting, et al.
Publicado: (2023)