Cargando…
Using adversarial networks to extend brain computer interface decoding accuracy over time
Existing intracortical brain computer interfaces (iBCIs) transform neural activity into control signals capable of restoring movement to persons with paralysis. However, the accuracy of the ‘decoder’ at the heart of the iBCI typically degrades over time due to turnover of recorded neurons. To compen...
Autores principales: | Ma, Xuan, Rizzoglio, Fabio, Bodkin, Kevin L, Perreault, Eric, Miller, Lee E, Kennedy, Ann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446822/ https://www.ncbi.nlm.nih.gov/pubmed/37610305 http://dx.doi.org/10.7554/eLife.84296 |
Ejemplares similares
-
From monkeys to humans: observation-based EMG brain–computer interface decoders for humans with paralysis
por: Rizzoglio, Fabio, et al.
Publicado: (2023) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Decoding the EEG patterns induced by sequential finger movement for brain-computer interfaces
por: Liu, Chang, et al.
Publicado: (2023) -
Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface
por: Khan, M. Jawad, et al.
Publicado: (2014) -
Unsupervised Adaptation of Brain-Machine Interface Decoders
por: Gürel, Tayfun, et al.
Publicado: (2012)