Cargando…
An analog-AI chip for energy-efficient speech recognition and transcription
Models of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks(1,2), but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory c...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447234/ https://www.ncbi.nlm.nih.gov/pubmed/37612392 http://dx.doi.org/10.1038/s41586-023-06337-5 |
_version_ | 1785094515112017920 |
---|---|
author | Ambrogio, S. Narayanan, P. Okazaki, A. Fasoli, A. Mackin, C. Hosokawa, K. Nomura, A. Yasuda, T. Chen, A. Friz, A. Ishii, M. Luquin, J. Kohda, Y. Saulnier, N. Brew, K. Choi, S. Ok, I. Philip, T. Chan, V. Silvestre, C. Ahsan, I. Narayanan, V. Tsai, H. Burr, G. W. |
author_facet | Ambrogio, S. Narayanan, P. Okazaki, A. Fasoli, A. Mackin, C. Hosokawa, K. Nomura, A. Yasuda, T. Chen, A. Friz, A. Ishii, M. Luquin, J. Kohda, Y. Saulnier, N. Brew, K. Choi, S. Ok, I. Philip, T. Chan, V. Silvestre, C. Ahsan, I. Narayanan, V. Tsai, H. Burr, G. W. |
author_sort | Ambrogio, S. |
collection | PubMed |
description | Models of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks(1,2), but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory computing (analog-AI)(3–7) can provide better energy efficiency by performing matrix–vector multiplications in parallel on ‘memory tiles’. However, analog-AI has yet to demonstrate software-equivalent (SW(eq)) accuracy on models that require many such tiles and efficient communication of neural-network activations between the tiles. Here we present an analog-AI chip that combines 35 million phase-change memory devices across 34 tiles, massively parallel inter-tile communication and analog, low-power peripheral circuitry that can achieve up to 12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance. We demonstrate fully end-to-end SW(eq) accuracy for a small keyword-spotting network and near-SW(eq) accuracy on the much larger MLPerf(8) recurrent neural-network transducer (RNNT), with more than 45 million weights mapped onto more than 140 million phase-change memory devices across five chips. |
format | Online Article Text |
id | pubmed-10447234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104472342023-08-25 An analog-AI chip for energy-efficient speech recognition and transcription Ambrogio, S. Narayanan, P. Okazaki, A. Fasoli, A. Mackin, C. Hosokawa, K. Nomura, A. Yasuda, T. Chen, A. Friz, A. Ishii, M. Luquin, J. Kohda, Y. Saulnier, N. Brew, K. Choi, S. Ok, I. Philip, T. Chan, V. Silvestre, C. Ahsan, I. Narayanan, V. Tsai, H. Burr, G. W. Nature Article Models of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks(1,2), but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory computing (analog-AI)(3–7) can provide better energy efficiency by performing matrix–vector multiplications in parallel on ‘memory tiles’. However, analog-AI has yet to demonstrate software-equivalent (SW(eq)) accuracy on models that require many such tiles and efficient communication of neural-network activations between the tiles. Here we present an analog-AI chip that combines 35 million phase-change memory devices across 34 tiles, massively parallel inter-tile communication and analog, low-power peripheral circuitry that can achieve up to 12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance. We demonstrate fully end-to-end SW(eq) accuracy for a small keyword-spotting network and near-SW(eq) accuracy on the much larger MLPerf(8) recurrent neural-network transducer (RNNT), with more than 45 million weights mapped onto more than 140 million phase-change memory devices across five chips. Nature Publishing Group UK 2023-08-23 2023 /pmc/articles/PMC10447234/ /pubmed/37612392 http://dx.doi.org/10.1038/s41586-023-06337-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ambrogio, S. Narayanan, P. Okazaki, A. Fasoli, A. Mackin, C. Hosokawa, K. Nomura, A. Yasuda, T. Chen, A. Friz, A. Ishii, M. Luquin, J. Kohda, Y. Saulnier, N. Brew, K. Choi, S. Ok, I. Philip, T. Chan, V. Silvestre, C. Ahsan, I. Narayanan, V. Tsai, H. Burr, G. W. An analog-AI chip for energy-efficient speech recognition and transcription |
title | An analog-AI chip for energy-efficient speech recognition and transcription |
title_full | An analog-AI chip for energy-efficient speech recognition and transcription |
title_fullStr | An analog-AI chip for energy-efficient speech recognition and transcription |
title_full_unstemmed | An analog-AI chip for energy-efficient speech recognition and transcription |
title_short | An analog-AI chip for energy-efficient speech recognition and transcription |
title_sort | analog-ai chip for energy-efficient speech recognition and transcription |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447234/ https://www.ncbi.nlm.nih.gov/pubmed/37612392 http://dx.doi.org/10.1038/s41586-023-06337-5 |
work_keys_str_mv | AT ambrogios ananalogaichipforenergyefficientspeechrecognitionandtranscription AT narayananp ananalogaichipforenergyefficientspeechrecognitionandtranscription AT okazakia ananalogaichipforenergyefficientspeechrecognitionandtranscription AT fasolia ananalogaichipforenergyefficientspeechrecognitionandtranscription AT mackinc ananalogaichipforenergyefficientspeechrecognitionandtranscription AT hosokawak ananalogaichipforenergyefficientspeechrecognitionandtranscription AT nomuraa ananalogaichipforenergyefficientspeechrecognitionandtranscription AT yasudat ananalogaichipforenergyefficientspeechrecognitionandtranscription AT chena ananalogaichipforenergyefficientspeechrecognitionandtranscription AT friza ananalogaichipforenergyefficientspeechrecognitionandtranscription AT ishiim ananalogaichipforenergyefficientspeechrecognitionandtranscription AT luquinj ananalogaichipforenergyefficientspeechrecognitionandtranscription AT kohday ananalogaichipforenergyefficientspeechrecognitionandtranscription AT saulniern ananalogaichipforenergyefficientspeechrecognitionandtranscription AT brewk ananalogaichipforenergyefficientspeechrecognitionandtranscription AT chois ananalogaichipforenergyefficientspeechrecognitionandtranscription AT oki ananalogaichipforenergyefficientspeechrecognitionandtranscription AT philipt ananalogaichipforenergyefficientspeechrecognitionandtranscription AT chanv ananalogaichipforenergyefficientspeechrecognitionandtranscription AT silvestrec ananalogaichipforenergyefficientspeechrecognitionandtranscription AT ahsani ananalogaichipforenergyefficientspeechrecognitionandtranscription AT narayananv ananalogaichipforenergyefficientspeechrecognitionandtranscription AT tsaih ananalogaichipforenergyefficientspeechrecognitionandtranscription AT burrgw ananalogaichipforenergyefficientspeechrecognitionandtranscription AT ambrogios analogaichipforenergyefficientspeechrecognitionandtranscription AT narayananp analogaichipforenergyefficientspeechrecognitionandtranscription AT okazakia analogaichipforenergyefficientspeechrecognitionandtranscription AT fasolia analogaichipforenergyefficientspeechrecognitionandtranscription AT mackinc analogaichipforenergyefficientspeechrecognitionandtranscription AT hosokawak analogaichipforenergyefficientspeechrecognitionandtranscription AT nomuraa analogaichipforenergyefficientspeechrecognitionandtranscription AT yasudat analogaichipforenergyefficientspeechrecognitionandtranscription AT chena analogaichipforenergyefficientspeechrecognitionandtranscription AT friza analogaichipforenergyefficientspeechrecognitionandtranscription AT ishiim analogaichipforenergyefficientspeechrecognitionandtranscription AT luquinj analogaichipforenergyefficientspeechrecognitionandtranscription AT kohday analogaichipforenergyefficientspeechrecognitionandtranscription AT saulniern analogaichipforenergyefficientspeechrecognitionandtranscription AT brewk analogaichipforenergyefficientspeechrecognitionandtranscription AT chois analogaichipforenergyefficientspeechrecognitionandtranscription AT oki analogaichipforenergyefficientspeechrecognitionandtranscription AT philipt analogaichipforenergyefficientspeechrecognitionandtranscription AT chanv analogaichipforenergyefficientspeechrecognitionandtranscription AT silvestrec analogaichipforenergyefficientspeechrecognitionandtranscription AT ahsani analogaichipforenergyefficientspeechrecognitionandtranscription AT narayananv analogaichipforenergyefficientspeechrecognitionandtranscription AT tsaih analogaichipforenergyefficientspeechrecognitionandtranscription AT burrgw analogaichipforenergyefficientspeechrecognitionandtranscription |