Cargando…

An analog-AI chip for energy-efficient speech recognition and transcription

Models of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks(1,2), but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory c...

Descripción completa

Detalles Bibliográficos
Autores principales: Ambrogio, S., Narayanan, P., Okazaki, A., Fasoli, A., Mackin, C., Hosokawa, K., Nomura, A., Yasuda, T., Chen, A., Friz, A., Ishii, M., Luquin, J., Kohda, Y., Saulnier, N., Brew, K., Choi, S., Ok, I., Philip, T., Chan, V., Silvestre, C., Ahsan, I., Narayanan, V., Tsai, H., Burr, G. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447234/
https://www.ncbi.nlm.nih.gov/pubmed/37612392
http://dx.doi.org/10.1038/s41586-023-06337-5
_version_ 1785094515112017920
author Ambrogio, S.
Narayanan, P.
Okazaki, A.
Fasoli, A.
Mackin, C.
Hosokawa, K.
Nomura, A.
Yasuda, T.
Chen, A.
Friz, A.
Ishii, M.
Luquin, J.
Kohda, Y.
Saulnier, N.
Brew, K.
Choi, S.
Ok, I.
Philip, T.
Chan, V.
Silvestre, C.
Ahsan, I.
Narayanan, V.
Tsai, H.
Burr, G. W.
author_facet Ambrogio, S.
Narayanan, P.
Okazaki, A.
Fasoli, A.
Mackin, C.
Hosokawa, K.
Nomura, A.
Yasuda, T.
Chen, A.
Friz, A.
Ishii, M.
Luquin, J.
Kohda, Y.
Saulnier, N.
Brew, K.
Choi, S.
Ok, I.
Philip, T.
Chan, V.
Silvestre, C.
Ahsan, I.
Narayanan, V.
Tsai, H.
Burr, G. W.
author_sort Ambrogio, S.
collection PubMed
description Models of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks(1,2), but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory computing (analog-AI)(3–7) can provide better energy efficiency by performing matrix–vector multiplications in parallel on ‘memory tiles’. However, analog-AI has yet to demonstrate software-equivalent (SW(eq)) accuracy on models that require many such tiles and efficient communication of neural-network activations between the tiles. Here we present an analog-AI chip that combines 35 million phase-change memory devices across 34 tiles, massively parallel inter-tile communication and analog, low-power peripheral circuitry that can achieve up to 12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance. We demonstrate fully end-to-end SW(eq) accuracy for a small keyword-spotting network and near-SW(eq) accuracy on the much larger MLPerf(8) recurrent neural-network transducer (RNNT), with more than 45 million weights mapped onto more than 140 million phase-change memory devices across five chips.
format Online
Article
Text
id pubmed-10447234
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104472342023-08-25 An analog-AI chip for energy-efficient speech recognition and transcription Ambrogio, S. Narayanan, P. Okazaki, A. Fasoli, A. Mackin, C. Hosokawa, K. Nomura, A. Yasuda, T. Chen, A. Friz, A. Ishii, M. Luquin, J. Kohda, Y. Saulnier, N. Brew, K. Choi, S. Ok, I. Philip, T. Chan, V. Silvestre, C. Ahsan, I. Narayanan, V. Tsai, H. Burr, G. W. Nature Article Models of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks(1,2), but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory computing (analog-AI)(3–7) can provide better energy efficiency by performing matrix–vector multiplications in parallel on ‘memory tiles’. However, analog-AI has yet to demonstrate software-equivalent (SW(eq)) accuracy on models that require many such tiles and efficient communication of neural-network activations between the tiles. Here we present an analog-AI chip that combines 35 million phase-change memory devices across 34 tiles, massively parallel inter-tile communication and analog, low-power peripheral circuitry that can achieve up to 12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance. We demonstrate fully end-to-end SW(eq) accuracy for a small keyword-spotting network and near-SW(eq) accuracy on the much larger MLPerf(8) recurrent neural-network transducer (RNNT), with more than 45 million weights mapped onto more than 140 million phase-change memory devices across five chips. Nature Publishing Group UK 2023-08-23 2023 /pmc/articles/PMC10447234/ /pubmed/37612392 http://dx.doi.org/10.1038/s41586-023-06337-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ambrogio, S.
Narayanan, P.
Okazaki, A.
Fasoli, A.
Mackin, C.
Hosokawa, K.
Nomura, A.
Yasuda, T.
Chen, A.
Friz, A.
Ishii, M.
Luquin, J.
Kohda, Y.
Saulnier, N.
Brew, K.
Choi, S.
Ok, I.
Philip, T.
Chan, V.
Silvestre, C.
Ahsan, I.
Narayanan, V.
Tsai, H.
Burr, G. W.
An analog-AI chip for energy-efficient speech recognition and transcription
title An analog-AI chip for energy-efficient speech recognition and transcription
title_full An analog-AI chip for energy-efficient speech recognition and transcription
title_fullStr An analog-AI chip for energy-efficient speech recognition and transcription
title_full_unstemmed An analog-AI chip for energy-efficient speech recognition and transcription
title_short An analog-AI chip for energy-efficient speech recognition and transcription
title_sort analog-ai chip for energy-efficient speech recognition and transcription
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447234/
https://www.ncbi.nlm.nih.gov/pubmed/37612392
http://dx.doi.org/10.1038/s41586-023-06337-5
work_keys_str_mv AT ambrogios ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT narayananp ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT okazakia ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT fasolia ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT mackinc ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT hosokawak ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT nomuraa ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT yasudat ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT chena ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT friza ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT ishiim ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT luquinj ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT kohday ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT saulniern ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT brewk ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT chois ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT oki ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT philipt ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT chanv ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT silvestrec ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT ahsani ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT narayananv ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT tsaih ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT burrgw ananalogaichipforenergyefficientspeechrecognitionandtranscription
AT ambrogios analogaichipforenergyefficientspeechrecognitionandtranscription
AT narayananp analogaichipforenergyefficientspeechrecognitionandtranscription
AT okazakia analogaichipforenergyefficientspeechrecognitionandtranscription
AT fasolia analogaichipforenergyefficientspeechrecognitionandtranscription
AT mackinc analogaichipforenergyefficientspeechrecognitionandtranscription
AT hosokawak analogaichipforenergyefficientspeechrecognitionandtranscription
AT nomuraa analogaichipforenergyefficientspeechrecognitionandtranscription
AT yasudat analogaichipforenergyefficientspeechrecognitionandtranscription
AT chena analogaichipforenergyefficientspeechrecognitionandtranscription
AT friza analogaichipforenergyefficientspeechrecognitionandtranscription
AT ishiim analogaichipforenergyefficientspeechrecognitionandtranscription
AT luquinj analogaichipforenergyefficientspeechrecognitionandtranscription
AT kohday analogaichipforenergyefficientspeechrecognitionandtranscription
AT saulniern analogaichipforenergyefficientspeechrecognitionandtranscription
AT brewk analogaichipforenergyefficientspeechrecognitionandtranscription
AT chois analogaichipforenergyefficientspeechrecognitionandtranscription
AT oki analogaichipforenergyefficientspeechrecognitionandtranscription
AT philipt analogaichipforenergyefficientspeechrecognitionandtranscription
AT chanv analogaichipforenergyefficientspeechrecognitionandtranscription
AT silvestrec analogaichipforenergyefficientspeechrecognitionandtranscription
AT ahsani analogaichipforenergyefficientspeechrecognitionandtranscription
AT narayananv analogaichipforenergyefficientspeechrecognitionandtranscription
AT tsaih analogaichipforenergyefficientspeechrecognitionandtranscription
AT burrgw analogaichipforenergyefficientspeechrecognitionandtranscription