Cargando…
An analog-AI chip for energy-efficient speech recognition and transcription
Models of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks(1,2), but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory c...
Autores principales: | Ambrogio, S., Narayanan, P., Okazaki, A., Fasoli, A., Mackin, C., Hosokawa, K., Nomura, A., Yasuda, T., Chen, A., Friz, A., Ishii, M., Luquin, J., Kohda, Y., Saulnier, N., Brew, K., Choi, S., Ok, I., Philip, T., Chan, V., Silvestre, C., Ahsan, I., Narayanan, V., Tsai, H., Burr, G. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447234/ https://www.ncbi.nlm.nih.gov/pubmed/37612392 http://dx.doi.org/10.1038/s41586-023-06337-5 |
Ejemplares similares
-
Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices
por: Spoon, Katie, et al.
Publicado: (2021) -
Optimised weight programming for analogue memory-based deep neural networks
por: Mackin, Charles, et al.
Publicado: (2022) -
Signal and noise extraction from analog memory elements for neuromorphic computing
por: Gong, N., et al.
Publicado: (2018) -
Age weight, quality of muscle and speech!
por: Adenwalla, H.S., et al.
Publicado: (2012) -
Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators
por: Rasch, Malte J., et al.
Publicado: (2023)