Cargando…
Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target
The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common gen...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447251/ https://www.ncbi.nlm.nih.gov/pubmed/37580540 http://dx.doi.org/10.1038/s42255-023-00857-0 |
_version_ | 1785094520728190976 |
---|---|
author | Vande Voorde, Johan Steven, Rory T. Najumudeen, Arafath K. Ford, Catriona A. Dexter, Alex Gonzalez-Fernandez, Ariadna Nikula, Chelsea J. Xiang, Yuchen Ford, Lauren Maneta Stavrakaki, Stefania Gilroy, Kathryn Zeiger, Lucas B. Pennel, Kathryn Hatthakarnkul, Phimmada Elia, Efstathios A. Nasif, Ammar Murta, Teresa Manoli, Eftychios Mason, Sam Gillespie, Michael Lannagan, Tamsin R. M. Vlahov, Nikola Ridgway, Rachel A. Nixon, Colin Raven, Alexander Mills, Megan Athineos, Dimitris Kanellos, Georgios Nourse, Craig Gay, David M. Hughes, Mark Burton, Amy Yan, Bin Sellers, Katherine Wu, Vincen De Ridder, Kobe Shokry, Engy Huerta Uribe, Alejandro Clark, William Clark, Graeme Kirschner, Kristina Thienpont, Bernard Li, Vivian S. W. Maddocks, Oliver D. K. Barry, Simon T. Goodwin, Richard J. A. Kinross, James Edwards, Joanne Yuneva, Mariia O. Sumpton, David Takats, Zoltan Campbell, Andrew D. Bunch, Josephine Sansom, Owen J. |
author_facet | Vande Voorde, Johan Steven, Rory T. Najumudeen, Arafath K. Ford, Catriona A. Dexter, Alex Gonzalez-Fernandez, Ariadna Nikula, Chelsea J. Xiang, Yuchen Ford, Lauren Maneta Stavrakaki, Stefania Gilroy, Kathryn Zeiger, Lucas B. Pennel, Kathryn Hatthakarnkul, Phimmada Elia, Efstathios A. Nasif, Ammar Murta, Teresa Manoli, Eftychios Mason, Sam Gillespie, Michael Lannagan, Tamsin R. M. Vlahov, Nikola Ridgway, Rachel A. Nixon, Colin Raven, Alexander Mills, Megan Athineos, Dimitris Kanellos, Georgios Nourse, Craig Gay, David M. Hughes, Mark Burton, Amy Yan, Bin Sellers, Katherine Wu, Vincen De Ridder, Kobe Shokry, Engy Huerta Uribe, Alejandro Clark, William Clark, Graeme Kirschner, Kristina Thienpont, Bernard Li, Vivian S. W. Maddocks, Oliver D. K. Barry, Simon T. Goodwin, Richard J. A. Kinross, James Edwards, Joanne Yuneva, Mariia O. Sumpton, David Takats, Zoltan Campbell, Andrew D. Bunch, Josephine Sansom, Owen J. |
author_sort | Vande Voorde, Johan |
collection | PubMed |
description | The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in Apc(Min/+) mice indicating its potential as a metabolic drug target in CRC. |
format | Online Article Text |
id | pubmed-10447251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104472512023-08-25 Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target Vande Voorde, Johan Steven, Rory T. Najumudeen, Arafath K. Ford, Catriona A. Dexter, Alex Gonzalez-Fernandez, Ariadna Nikula, Chelsea J. Xiang, Yuchen Ford, Lauren Maneta Stavrakaki, Stefania Gilroy, Kathryn Zeiger, Lucas B. Pennel, Kathryn Hatthakarnkul, Phimmada Elia, Efstathios A. Nasif, Ammar Murta, Teresa Manoli, Eftychios Mason, Sam Gillespie, Michael Lannagan, Tamsin R. M. Vlahov, Nikola Ridgway, Rachel A. Nixon, Colin Raven, Alexander Mills, Megan Athineos, Dimitris Kanellos, Georgios Nourse, Craig Gay, David M. Hughes, Mark Burton, Amy Yan, Bin Sellers, Katherine Wu, Vincen De Ridder, Kobe Shokry, Engy Huerta Uribe, Alejandro Clark, William Clark, Graeme Kirschner, Kristina Thienpont, Bernard Li, Vivian S. W. Maddocks, Oliver D. K. Barry, Simon T. Goodwin, Richard J. A. Kinross, James Edwards, Joanne Yuneva, Mariia O. Sumpton, David Takats, Zoltan Campbell, Andrew D. Bunch, Josephine Sansom, Owen J. Nat Metab Letter The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in Apc(Min/+) mice indicating its potential as a metabolic drug target in CRC. Nature Publishing Group UK 2023-08-14 2023 /pmc/articles/PMC10447251/ /pubmed/37580540 http://dx.doi.org/10.1038/s42255-023-00857-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Letter Vande Voorde, Johan Steven, Rory T. Najumudeen, Arafath K. Ford, Catriona A. Dexter, Alex Gonzalez-Fernandez, Ariadna Nikula, Chelsea J. Xiang, Yuchen Ford, Lauren Maneta Stavrakaki, Stefania Gilroy, Kathryn Zeiger, Lucas B. Pennel, Kathryn Hatthakarnkul, Phimmada Elia, Efstathios A. Nasif, Ammar Murta, Teresa Manoli, Eftychios Mason, Sam Gillespie, Michael Lannagan, Tamsin R. M. Vlahov, Nikola Ridgway, Rachel A. Nixon, Colin Raven, Alexander Mills, Megan Athineos, Dimitris Kanellos, Georgios Nourse, Craig Gay, David M. Hughes, Mark Burton, Amy Yan, Bin Sellers, Katherine Wu, Vincen De Ridder, Kobe Shokry, Engy Huerta Uribe, Alejandro Clark, William Clark, Graeme Kirschner, Kristina Thienpont, Bernard Li, Vivian S. W. Maddocks, Oliver D. K. Barry, Simon T. Goodwin, Richard J. A. Kinross, James Edwards, Joanne Yuneva, Mariia O. Sumpton, David Takats, Zoltan Campbell, Andrew D. Bunch, Josephine Sansom, Owen J. Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target |
title | Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target |
title_full | Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target |
title_fullStr | Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target |
title_full_unstemmed | Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target |
title_short | Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target |
title_sort | metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447251/ https://www.ncbi.nlm.nih.gov/pubmed/37580540 http://dx.doi.org/10.1038/s42255-023-00857-0 |
work_keys_str_mv | AT vandevoordejohan metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT stevenroryt metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT najumudeenarafathk metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT fordcatrionaa metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT dexteralex metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT gonzalezfernandezariadna metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT nikulachelseaj metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT xiangyuchen metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT fordlauren metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT manetastavrakakistefania metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT gilroykathryn metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT zeigerlucasb metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT pennelkathryn metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT hatthakarnkulphimmada metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT eliaefstathiosa metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT nasifammar metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT murtateresa metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT manolieftychios metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT masonsam metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT gillespiemichael metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT lannagantamsinrm metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT vlahovnikola metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT ridgwayrachela metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT nixoncolin metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT ravenalexander metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT millsmegan metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT athineosdimitris metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT kanellosgeorgios metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT noursecraig metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT gaydavidm metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT hughesmark metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT burtonamy metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT yanbin metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT sellerskatherine metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT wuvincen metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT deridderkobe metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT shokryengy metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT huertauribealejandro metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT clarkwilliam metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT clarkgraeme metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT kirschnerkristina metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT thienpontbernard metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT liviviansw metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT maddocksoliverdk metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT barrysimont metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT goodwinrichardja metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT kinrossjames metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT edwardsjoanne metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT yunevamariiao metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT sumptondavid metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT takatszoltan metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT campbellandrewd metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT bunchjosephine metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget AT sansomowenj metabolicprofilingstratifiescolorectalcancerandrevealsadenosylhomocysteinaseasatherapeutictarget |