Cargando…
Improved EEG-based emotion recognition through information enhancement in connectivity feature map
Electroencephalography (EEG), despite its inherited complexity, is a preferable brain signal for automatic human emotion recognition (ER), which is a challenging machine learning task with emerging applications. In any automatic ER, machine learning (ML) models classify emotions using the extracted...
Autores principales: | Akhand, M. A. H., Maria, Mahfuza Akter, Kamal, Md Abdus Samad, Murase, Kazuyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447430/ https://www.ncbi.nlm.nih.gov/pubmed/37612354 http://dx.doi.org/10.1038/s41598-023-40786-2 |
Ejemplares similares
-
Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition
por: Zhang, Xiaodan, et al.
Publicado: (2023) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
EEG Feature Extraction and Data Augmentation in Emotion Recognition
por: Kalashami, Mahsa Pourhosein, et al.
Publicado: (2022) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Emotion Recognition Using a Reduced Set of EEG Channels Based on Holographic Feature Maps
por: Topic, Ante, et al.
Publicado: (2022)