Cargando…
Explainable deep learning approach for extracting cognitive features from hand-drawn images of intersecting pentagons
Hand drawing, which requires multiple neural systems for planning and controlling sequential movements, is a useful cognitive test for older adults. However, the conventional visual assessment of these drawings only captures limited attributes and overlooks subtle details that could help track cogni...
Autores principales: | Tasaki, Shinya, Kim, Namhee, Truty, Tim, Zhang, Ada, Buchman, Aron S., Lamar, Melissa, Bennett, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447434/ https://www.ncbi.nlm.nih.gov/pubmed/37612472 http://dx.doi.org/10.1038/s41746-023-00904-w |
Ejemplares similares
-
Soft tissue distraction in hand surgery: the “pentagonal frame” technique
por: Nazerani, Shahram, et al.
Publicado: (2009) -
Time Evolution of Plasmonic Features in Pentagonal Ag Clusters
por: Domenis, Nicola, et al.
Publicado: (2023) -
DECIMER—hand-drawn molecule images dataset
por: Brinkhaus, Henning Otto, et al.
Publicado: (2022) -
ChemPix: automated recognition of hand-drawn hydrocarbon structures using deep learning
por: Weir, Hayley, et al.
Publicado: (2021) -
DrawnNet: Offline Hand-Drawn Diagram Recognition Based on Keypoint Prediction of Aggregating Geometric Characteristics
por: Fang, Jiaqi, et al.
Publicado: (2022)