Cargando…
Neural superstatistics for Bayesian estimation of dynamic cognitive models
Mathematical models of cognition are often memoryless and ignore potential fluctuations of their parameters. However, human cognition is inherently dynamic. Thus, we propose to augment mechanistic cognitive models with a temporal dimension and estimate the resulting dynamics from a superstatistics p...
Autores principales: | Schumacher, Lukas, Bürkner, Paul-Christian, Voss, Andreas, Köthe, Ullrich, Radev, Stefan T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447473/ https://www.ncbi.nlm.nih.gov/pubmed/37612320 http://dx.doi.org/10.1038/s41598-023-40278-3 |
Ejemplares similares
-
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany
por: Radev, Stefan T., et al.
Publicado: (2021) -
Superstatistical model of bacterial DNA architecture
por: Bogachev, Mikhail I., et al.
Publicado: (2017) -
Wind Power Persistence Characterized by Superstatistics
por: Weber, Juliane, et al.
Publicado: (2019) -
Superstatistical analysis and modelling of heterogeneous random walks
por: Metzner, Claus, et al.
Publicado: (2015) -
Corrigendum: Superstatistical model of bacterial DNA architecture
por: Bogachev, Mikhail I., et al.
Publicado: (2017)