Cargando…
Chemical features and machine learning assisted predictions of protein-ligand short hydrogen bonds
There are continuous efforts to elucidate the structure and biological functions of short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms reside more than 0.3 Å closer than the sum of their van der Waals radii. In this work, we evaluate 1070 atomic-resolution protein structures and chara...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447522/ https://www.ncbi.nlm.nih.gov/pubmed/37612311 http://dx.doi.org/10.1038/s41598-023-40614-7 |
Sumario: | There are continuous efforts to elucidate the structure and biological functions of short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms reside more than 0.3 Å closer than the sum of their van der Waals radii. In this work, we evaluate 1070 atomic-resolution protein structures and characterize the common chemical features of SHBs formed between the side chains of amino acids and small molecule ligands. We then develop a machine learning assisted prediction of protein-ligand SHBs (MAPSHB-Ligand) model and reveal that the types of amino acids and ligand functional groups as well as the sequence of neighboring residues are essential factors that determine the class of protein-ligand hydrogen bonds. The MAPSHB-Ligand model and its implementation on our web server enable the effective identification of protein-ligand SHBs in proteins, which will facilitate the design of biomolecules and ligands that exploit these close contacts for enhanced functions. |
---|