Cargando…
Bayesian statistical modeling to predict observer-specific optimal windowing parameters in magnetic resonance imaging
Magnetic resonance (MR) images require a process known as windowing for optimizing the display conditions. However, the conventional windowing process often fails to achieve the preferred display conditions for observers due to various factors. This study proposes a novel framework for predicting th...
Autores principales: | Sugimoto, Kohei, Oita, Masataka, Kuroda, Masahiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448025/ https://www.ncbi.nlm.nih.gov/pubmed/37636402 http://dx.doi.org/10.1016/j.heliyon.2023.e19038 |
Ejemplares similares
-
Quantitative evaluation of the reduction of distortion and metallic artifacts in magnetic resonance images using the multiacquisition variable‑resonance image combination selective sequence
por: Hirano, Masaki, et al.
Publicado: (2023) -
Mean Heart Dose Prediction Using Parameters of Single-Slice Computed Tomography and Body Mass Index: Machine Learning Approach for Radiotherapy of Left-Sided Breast Cancer of Asian Patients
por: Al-Hammad, Wlla E., et al.
Publicado: (2023) -
Sample-efficient parameter exploration of the powder film drying process using experiment-based Bayesian optimization
por: Nagai, Kohei, et al.
Publicado: (2022) -
Optimization of Regularization Parameters in Compressed Sensing of Magnetic Resonance Angiography: Can Statistical Image Metrics Mimic Radiologists' Perception?
por: Akasaka, Thai, et al.
Publicado: (2016) -
Correction: Optimization of Regularization Parameters in Compressed Sensing of Magnetic Resonance Angiography: Can Statistical Image Metrics Mimic Radiologists' Perception?
por: Akasaka, Thai, et al.
Publicado: (2018)