Cargando…
iEdgeDTA: integrated edge information and 1D graph convolutional neural networks for binding affinity prediction
Artificial intelligence has become more prevalent in broad fields, including drug discovery, in which the process is costly and time-consuming when conducted through wet experiments. As a result, drug repurposing, which tries to utilize approved and low-risk drugs for a new purpose, becomes more att...
Autores principales: | Suviriyapaisal, Natchanon, Wichadakul, Duangdao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448119/ https://www.ncbi.nlm.nih.gov/pubmed/37636509 http://dx.doi.org/10.1039/d3ra03796g |
Ejemplares similares
-
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023) -
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022) -
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug–target binding affinity prediction
por: He, Haohuai, et al.
Publicado: (2023) -
CSatDTA: Prediction of Drug–Target Binding Affinity Using Convolution Model with Self-Attention
por: Ghimire, Ashutosh, et al.
Publicado: (2022)