Cargando…
Detecting at-risk mental states for psychosis (ARMS) using machine learning ensembles and facial features
AIMS: Our study aimed to develop a machine learning ensemble to distinguish “at-risk mental states for psychosis” (ARMS) subjects from control individuals from the general population based on facial data extracted from video-recordings. METHODS: 58 non-help-seeking medication-naïve ARMS and 70 healt...
Autores principales: | Loch, Alexandre Andrade, Gondim, João Medrado, Argolo, Felipe Coelho, Lopes-Rocha, Ana Caroline, Andrade, Julio Cesar, van de Bilt, Martinus Theodorus, de Jesus, Leonardo Peroni, Haddad, Natalia Mansur, Cecchi, Guillermo A., Mota, Natalia Bezerra, Gattaz, Wagner Farid, Corcoran, Cheryl Mary, Ara, Anderson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Publisher B. V
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448183/ https://www.ncbi.nlm.nih.gov/pubmed/37473667 http://dx.doi.org/10.1016/j.schres.2023.07.011 |
Ejemplares similares
-
Motion energy analysis during speech tasks in medication-naïve individuals with at-risk mental states for psychosis
por: Lopes-Rocha, Ana Caroline, et al.
Publicado: (2022) -
Gesticulation in individuals with at risk mental states for psychosis
por: Lopes-Rocha, Ana Caroline, et al.
Publicado: (2023) -
Ethical Implications of the Use of Language Analysis Technologies for the Diagnosis and Prediction of Psychiatric Disorders
por: Loch, Alexandre Andrade, et al.
Publicado: (2022) -
Exacerbation of psychosis risk during the COVID-19 pandemic: The disproportionate impact on the lower income population
por: Loch, Alexandre Andrade, et al.
Publicado: (2022) -
T203. ILLICIT DRUGS USE AND ULTRA-HIGH RISK (UHR) FOR PSYCHOSIS STATUS IN A LATIN-AMERICAN SAMPLE
por: Serpa, Mauricio, et al.
Publicado: (2018)