Cargando…

Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution

Here, we present and release the Global Rainfall Erosivity Database (GloREDa), a multi-source platform containing rainfall erosivity values for almost 4000 stations globally. The database was compiled through a global collaboration between a network of researchers, meteorological services and enviro...

Descripción completa

Detalles Bibliográficos
Autores principales: Panagos, Panos, Hengl, Tomislav, Wheeler, Ichsani, Marcinkowski, Pawel, Rukeza, Montfort Bagalwa, Yu, Bofu, Yang, Jae E., Miao, Chiyuan, Chattopadhyay, Nabansu, Sadeghi, Seyed Hamidreza, Levi, Yoav, Erpul, Gunay, Birkel, Christian, Hoyos, Natalia, Oliveira, Paulo Tarso S., Bonilla, Carlos A., Nel, Werner, Al Dashti, Hassan, Bezak, Nejc, Van Oost, Kristof, Petan, Sašo, Fenta, Ayele Almaw, Haregeweyn, Nigussie, Pérez-Bidegain, Mario, Liakos, Leonidas, Ballabio, Cristiano, Borrelli, Pasquale
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448267/
https://www.ncbi.nlm.nih.gov/pubmed/37636128
http://dx.doi.org/10.1016/j.dib.2023.109482
_version_ 1785094695647444992
author Panagos, Panos
Hengl, Tomislav
Wheeler, Ichsani
Marcinkowski, Pawel
Rukeza, Montfort Bagalwa
Yu, Bofu
Yang, Jae E.
Miao, Chiyuan
Chattopadhyay, Nabansu
Sadeghi, Seyed Hamidreza
Levi, Yoav
Erpul, Gunay
Birkel, Christian
Hoyos, Natalia
Oliveira, Paulo Tarso S.
Bonilla, Carlos A.
Nel, Werner
Al Dashti, Hassan
Bezak, Nejc
Van Oost, Kristof
Petan, Sašo
Fenta, Ayele Almaw
Haregeweyn, Nigussie
Pérez-Bidegain, Mario
Liakos, Leonidas
Ballabio, Cristiano
Borrelli, Pasquale
author_facet Panagos, Panos
Hengl, Tomislav
Wheeler, Ichsani
Marcinkowski, Pawel
Rukeza, Montfort Bagalwa
Yu, Bofu
Yang, Jae E.
Miao, Chiyuan
Chattopadhyay, Nabansu
Sadeghi, Seyed Hamidreza
Levi, Yoav
Erpul, Gunay
Birkel, Christian
Hoyos, Natalia
Oliveira, Paulo Tarso S.
Bonilla, Carlos A.
Nel, Werner
Al Dashti, Hassan
Bezak, Nejc
Van Oost, Kristof
Petan, Sašo
Fenta, Ayele Almaw
Haregeweyn, Nigussie
Pérez-Bidegain, Mario
Liakos, Leonidas
Ballabio, Cristiano
Borrelli, Pasquale
author_sort Panagos, Panos
collection PubMed
description Here, we present and release the Global Rainfall Erosivity Database (GloREDa), a multi-source platform containing rainfall erosivity values for almost 4000 stations globally. The database was compiled through a global collaboration between a network of researchers, meteorological services and environmental organisations from 65 countries. GloREDa is the first open access database of rainfall erosivity (R-factor) based on hourly and sub-hourly rainfall records at a global scale. This database is now stored and accessible for download in the long-term European Soil Data Centre (ESDAC) repository of the European Commission's Joint Research Centre. This will ensure the further development of the database with insertions of new records, maintenance of the data and provision of a helpdesk. In addition to the annual erosivity data, this release also includes the mean monthly erosivity data for 94% of the GloREDa stations. Based on these mean monthly R-factor values, we predict the global monthly erosivity datasets at 1 km resolution using the ensemble machine learning approach (ML) as implemented in the mlr package for R. The produced monthly raster data (GeoTIFF format) may be useful for soil erosion prediction modelling, sediment distribution analysis, climate change predictions, flood, and natural disaster assessments and can be valuable inputs for Land and Earth Systems modelling.
format Online
Article
Text
id pubmed-10448267
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104482672023-08-25 Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution Panagos, Panos Hengl, Tomislav Wheeler, Ichsani Marcinkowski, Pawel Rukeza, Montfort Bagalwa Yu, Bofu Yang, Jae E. Miao, Chiyuan Chattopadhyay, Nabansu Sadeghi, Seyed Hamidreza Levi, Yoav Erpul, Gunay Birkel, Christian Hoyos, Natalia Oliveira, Paulo Tarso S. Bonilla, Carlos A. Nel, Werner Al Dashti, Hassan Bezak, Nejc Van Oost, Kristof Petan, Sašo Fenta, Ayele Almaw Haregeweyn, Nigussie Pérez-Bidegain, Mario Liakos, Leonidas Ballabio, Cristiano Borrelli, Pasquale Data Brief Data Article Here, we present and release the Global Rainfall Erosivity Database (GloREDa), a multi-source platform containing rainfall erosivity values for almost 4000 stations globally. The database was compiled through a global collaboration between a network of researchers, meteorological services and environmental organisations from 65 countries. GloREDa is the first open access database of rainfall erosivity (R-factor) based on hourly and sub-hourly rainfall records at a global scale. This database is now stored and accessible for download in the long-term European Soil Data Centre (ESDAC) repository of the European Commission's Joint Research Centre. This will ensure the further development of the database with insertions of new records, maintenance of the data and provision of a helpdesk. In addition to the annual erosivity data, this release also includes the mean monthly erosivity data for 94% of the GloREDa stations. Based on these mean monthly R-factor values, we predict the global monthly erosivity datasets at 1 km resolution using the ensemble machine learning approach (ML) as implemented in the mlr package for R. The produced monthly raster data (GeoTIFF format) may be useful for soil erosion prediction modelling, sediment distribution analysis, climate change predictions, flood, and natural disaster assessments and can be valuable inputs for Land and Earth Systems modelling. Elsevier 2023-08-09 /pmc/articles/PMC10448267/ /pubmed/37636128 http://dx.doi.org/10.1016/j.dib.2023.109482 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Panagos, Panos
Hengl, Tomislav
Wheeler, Ichsani
Marcinkowski, Pawel
Rukeza, Montfort Bagalwa
Yu, Bofu
Yang, Jae E.
Miao, Chiyuan
Chattopadhyay, Nabansu
Sadeghi, Seyed Hamidreza
Levi, Yoav
Erpul, Gunay
Birkel, Christian
Hoyos, Natalia
Oliveira, Paulo Tarso S.
Bonilla, Carlos A.
Nel, Werner
Al Dashti, Hassan
Bezak, Nejc
Van Oost, Kristof
Petan, Sašo
Fenta, Ayele Almaw
Haregeweyn, Nigussie
Pérez-Bidegain, Mario
Liakos, Leonidas
Ballabio, Cristiano
Borrelli, Pasquale
Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution
title Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution
title_full Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution
title_fullStr Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution
title_full_unstemmed Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution
title_short Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution
title_sort global rainfall erosivity database (gloreda) and monthly r-factor data at 1 km spatial resolution
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448267/
https://www.ncbi.nlm.nih.gov/pubmed/37636128
http://dx.doi.org/10.1016/j.dib.2023.109482
work_keys_str_mv AT panagospanos globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT hengltomislav globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT wheelerichsani globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT marcinkowskipawel globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT rukezamontfortbagalwa globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT yubofu globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT yangjaee globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT miaochiyuan globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT chattopadhyaynabansu globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT sadeghiseyedhamidreza globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT leviyoav globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT erpulgunay globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT birkelchristian globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT hoyosnatalia globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT oliveirapaulotarsos globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT bonillacarlosa globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT nelwerner globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT aldashtihassan globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT bezaknejc globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT vanoostkristof globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT petansaso globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT fentaayelealmaw globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT haregeweynnigussie globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT perezbidegainmario globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT liakosleonidas globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT ballabiocristiano globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution
AT borrellipasquale globalrainfallerosivitydatabasegloredaandmonthlyrfactordataat1kmspatialresolution