Cargando…

First-principles study of BX–SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance

The vertical integration of two-dimensional (2D) materials through weak van der Waals (vdW) interactions is gaining tremendous attention for application in nanotechnology and photovoltaics. Here, we performed first-principles study of the electronic band structure, optical and photocatalytic propert...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Sheraz, Din, H. U., Sabir, S. S. Ullah, Amin, B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448330/
https://www.ncbi.nlm.nih.gov/pubmed/37638149
http://dx.doi.org/10.1039/d3na00167a
_version_ 1785094711172661248
author Ahmad, Sheraz
Din, H. U.
Sabir, S. S. Ullah
Amin, B.
author_facet Ahmad, Sheraz
Din, H. U.
Sabir, S. S. Ullah
Amin, B.
author_sort Ahmad, Sheraz
collection PubMed
description The vertical integration of two-dimensional (2D) materials through weak van der Waals (vdW) interactions is gaining tremendous attention for application in nanotechnology and photovoltaics. Here, we performed first-principles study of the electronic band structure, optical and photocatalytic properties of vertically stacked heterostructures based on boron pnictides BX (X = As, P) and SiS monolayers. Both heterobilayers possess a stable geometry and reveal type I band alignment with a direct band gap, indicating substantial transfer of charge across the junction of the same layer. Interestingly, a redshift is found in the visible light region of the optical absorption spectra of BX–SiS heterobilayers. The comparatively larger hole mobility (14 000 cm(2) V(−1) s(−1)) of BP–SiS preferably allows hole conduction in the zigzag-direction. More importantly, the excellent band edge values of the standard redox potential and smaller Gibbs free energy for the adsorption of hydrogen (ΔG(H*)) make them ideal for performing the hydrogen evolution reaction (HER) mechanism under solar irradiation. These findings offer exciting opportunities for developing next-generation devices based on BX–SiS heterobilayers for promising applications in nanoelectronics, optoelectronic devices and photocatalysts for water dissociation into hydrogen to produce renewable clean energy.
format Online
Article
Text
id pubmed-10448330
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-104483302023-08-25 First-principles study of BX–SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance Ahmad, Sheraz Din, H. U. Sabir, S. S. Ullah Amin, B. Nanoscale Adv Chemistry The vertical integration of two-dimensional (2D) materials through weak van der Waals (vdW) interactions is gaining tremendous attention for application in nanotechnology and photovoltaics. Here, we performed first-principles study of the electronic band structure, optical and photocatalytic properties of vertically stacked heterostructures based on boron pnictides BX (X = As, P) and SiS monolayers. Both heterobilayers possess a stable geometry and reveal type I band alignment with a direct band gap, indicating substantial transfer of charge across the junction of the same layer. Interestingly, a redshift is found in the visible light region of the optical absorption spectra of BX–SiS heterobilayers. The comparatively larger hole mobility (14 000 cm(2) V(−1) s(−1)) of BP–SiS preferably allows hole conduction in the zigzag-direction. More importantly, the excellent band edge values of the standard redox potential and smaller Gibbs free energy for the adsorption of hydrogen (ΔG(H*)) make them ideal for performing the hydrogen evolution reaction (HER) mechanism under solar irradiation. These findings offer exciting opportunities for developing next-generation devices based on BX–SiS heterobilayers for promising applications in nanoelectronics, optoelectronic devices and photocatalysts for water dissociation into hydrogen to produce renewable clean energy. RSC 2023-08-02 /pmc/articles/PMC10448330/ /pubmed/37638149 http://dx.doi.org/10.1039/d3na00167a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Ahmad, Sheraz
Din, H. U.
Sabir, S. S. Ullah
Amin, B.
First-principles study of BX–SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance
title First-principles study of BX–SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance
title_full First-principles study of BX–SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance
title_fullStr First-principles study of BX–SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance
title_full_unstemmed First-principles study of BX–SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance
title_short First-principles study of BX–SiS (X = As, P) van der Waals heterostructures for enhanced photocatalytic performance
title_sort first-principles study of bx–sis (x = as, p) van der waals heterostructures for enhanced photocatalytic performance
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448330/
https://www.ncbi.nlm.nih.gov/pubmed/37638149
http://dx.doi.org/10.1039/d3na00167a
work_keys_str_mv AT ahmadsheraz firstprinciplesstudyofbxsisxaspvanderwaalsheterostructuresforenhancedphotocatalyticperformance
AT dinhu firstprinciplesstudyofbxsisxaspvanderwaalsheterostructuresforenhancedphotocatalyticperformance
AT sabirssullah firstprinciplesstudyofbxsisxaspvanderwaalsheterostructuresforenhancedphotocatalyticperformance
AT aminb firstprinciplesstudyofbxsisxaspvanderwaalsheterostructuresforenhancedphotocatalyticperformance