Cargando…

The material properties of mitotic chromosomes

Chromosomes transform during the cell cycle, allowing transcription and replication during interphase and chromosome segregation during mitosis. Morphological changes are thought to be driven by the combined effects of DNA loop extrusion and a chromatin solubility phase transition. By extruding the...

Descripción completa

Detalles Bibliográficos
Autores principales: Spicer, Maximilian F.D., Gerlich, Daniel W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448380/
https://www.ncbi.nlm.nih.gov/pubmed/37279615
http://dx.doi.org/10.1016/j.sbi.2023.102617
Descripción
Sumario:Chromosomes transform during the cell cycle, allowing transcription and replication during interphase and chromosome segregation during mitosis. Morphological changes are thought to be driven by the combined effects of DNA loop extrusion and a chromatin solubility phase transition. By extruding the chromatin fibre into loops, condensins enrich at an axial core and provide resistance to spindle pulling forces. Mitotic chromosomes are further compacted by deacetylation of histone tails, rendering chromatin insoluble and resistant to penetration by microtubules. Regulation of surface properties by Ki-67 allows independent chromosome movement in early mitosis and clustering during mitotic exit. Recent progress has provided insight into how the extraordinary material properties of chromatin emerge from these activities, and how these properties facilitate faithful chromosome segregation.