Cargando…
Comparative study of multiple machine learning algorithms for risk level prediction in goaf
With the acceleration of the mining process, the goaf has become one of the main sources of danger in underground mines, seriously threatening the safe production of mines. To make an accurate prediction of the risk level of the goaf quickly, this paper optimizes the features of the goaf by correlat...
Autores principales: | Zhang, Bin, Hu, Shaohua, Li, Moxiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448475/ https://www.ncbi.nlm.nih.gov/pubmed/37636440 http://dx.doi.org/10.1016/j.heliyon.2023.e19092 |
Ejemplares similares
-
Simulations of goaf surface subsidence via filling control
por: Yang, Yong, et al.
Publicado: (2022) -
Research on comprehensive detection and visualize of hidden cavity goaf
por: Cao, Bo, et al.
Publicado: (2022) -
Application of machine learning algorithms to predict the thyroid disease risk: an experimental comparative study
por: Islam, Saima Sharleen, et al.
Publicado: (2022) -
Research on prediction of residual deformation in goaf of steeply inclined extra–thick coal seam
por: Huang, Changfu, et al.
Publicado: (2020) -
Study on Multiple Fractal Analysis and Response Characteristics of Acoustic Emission Signals from Goaf Rock Bodies
por: Xie, Xuebin, et al.
Publicado: (2022)