Cargando…
Data-to-music sonification and user engagement
The process of transforming data into sounds for auditory display provides unique user experiences and new perspectives for analyzing and interpreting data. A research study for data transformation to sounds based on musical elements, called data-to-music sonification, reveals how musical characteri...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448511/ https://www.ncbi.nlm.nih.gov/pubmed/37636320 http://dx.doi.org/10.3389/fdata.2023.1206081 |
_version_ | 1785094749595631616 |
---|---|
author | Middleton, Jonathan Hakulinen, Jaakko Tiitinen, Katariina Hella, Juho Keskinen, Tuuli Huuskonen, Pertti Culver, Jeffrey Linna, Juhani Turunen, Markku Ziat, Mounia Raisamo, Roope |
author_facet | Middleton, Jonathan Hakulinen, Jaakko Tiitinen, Katariina Hella, Juho Keskinen, Tuuli Huuskonen, Pertti Culver, Jeffrey Linna, Juhani Turunen, Markku Ziat, Mounia Raisamo, Roope |
author_sort | Middleton, Jonathan |
collection | PubMed |
description | The process of transforming data into sounds for auditory display provides unique user experiences and new perspectives for analyzing and interpreting data. A research study for data transformation to sounds based on musical elements, called data-to-music sonification, reveals how musical characteristics can serve analytical purposes with enhanced user engagement. An existing user engagement scale has been applied to measure engagement levels in three conditions within melodic, rhythmic, and chordal contexts. This article reports findings from a user engagement study with musical traits and states the benefits and challenges of using musical characteristics in sonifications. The results can guide the design of future sonifications of multivariable data. |
format | Online Article Text |
id | pubmed-10448511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104485112023-08-25 Data-to-music sonification and user engagement Middleton, Jonathan Hakulinen, Jaakko Tiitinen, Katariina Hella, Juho Keskinen, Tuuli Huuskonen, Pertti Culver, Jeffrey Linna, Juhani Turunen, Markku Ziat, Mounia Raisamo, Roope Front Big Data Big Data The process of transforming data into sounds for auditory display provides unique user experiences and new perspectives for analyzing and interpreting data. A research study for data transformation to sounds based on musical elements, called data-to-music sonification, reveals how musical characteristics can serve analytical purposes with enhanced user engagement. An existing user engagement scale has been applied to measure engagement levels in three conditions within melodic, rhythmic, and chordal contexts. This article reports findings from a user engagement study with musical traits and states the benefits and challenges of using musical characteristics in sonifications. The results can guide the design of future sonifications of multivariable data. Frontiers Media S.A. 2023-08-10 /pmc/articles/PMC10448511/ /pubmed/37636320 http://dx.doi.org/10.3389/fdata.2023.1206081 Text en Copyright © 2023 Middleton, Hakulinen, Tiitinen, Hella, Keskinen, Huuskonen, Culver, Linna, Turunen, Ziat and Raisamo. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Big Data Middleton, Jonathan Hakulinen, Jaakko Tiitinen, Katariina Hella, Juho Keskinen, Tuuli Huuskonen, Pertti Culver, Jeffrey Linna, Juhani Turunen, Markku Ziat, Mounia Raisamo, Roope Data-to-music sonification and user engagement |
title | Data-to-music sonification and user engagement |
title_full | Data-to-music sonification and user engagement |
title_fullStr | Data-to-music sonification and user engagement |
title_full_unstemmed | Data-to-music sonification and user engagement |
title_short | Data-to-music sonification and user engagement |
title_sort | data-to-music sonification and user engagement |
topic | Big Data |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448511/ https://www.ncbi.nlm.nih.gov/pubmed/37636320 http://dx.doi.org/10.3389/fdata.2023.1206081 |
work_keys_str_mv | AT middletonjonathan datatomusicsonificationanduserengagement AT hakulinenjaakko datatomusicsonificationanduserengagement AT tiitinenkatariina datatomusicsonificationanduserengagement AT hellajuho datatomusicsonificationanduserengagement AT keskinentuuli datatomusicsonificationanduserengagement AT huuskonenpertti datatomusicsonificationanduserengagement AT culverjeffrey datatomusicsonificationanduserengagement AT linnajuhani datatomusicsonificationanduserengagement AT turunenmarkku datatomusicsonificationanduserengagement AT ziatmounia datatomusicsonificationanduserengagement AT raisamoroope datatomusicsonificationanduserengagement |