Cargando…

Data-to-music sonification and user engagement

The process of transforming data into sounds for auditory display provides unique user experiences and new perspectives for analyzing and interpreting data. A research study for data transformation to sounds based on musical elements, called data-to-music sonification, reveals how musical characteri...

Descripción completa

Detalles Bibliográficos
Autores principales: Middleton, Jonathan, Hakulinen, Jaakko, Tiitinen, Katariina, Hella, Juho, Keskinen, Tuuli, Huuskonen, Pertti, Culver, Jeffrey, Linna, Juhani, Turunen, Markku, Ziat, Mounia, Raisamo, Roope
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448511/
https://www.ncbi.nlm.nih.gov/pubmed/37636320
http://dx.doi.org/10.3389/fdata.2023.1206081
_version_ 1785094749595631616
author Middleton, Jonathan
Hakulinen, Jaakko
Tiitinen, Katariina
Hella, Juho
Keskinen, Tuuli
Huuskonen, Pertti
Culver, Jeffrey
Linna, Juhani
Turunen, Markku
Ziat, Mounia
Raisamo, Roope
author_facet Middleton, Jonathan
Hakulinen, Jaakko
Tiitinen, Katariina
Hella, Juho
Keskinen, Tuuli
Huuskonen, Pertti
Culver, Jeffrey
Linna, Juhani
Turunen, Markku
Ziat, Mounia
Raisamo, Roope
author_sort Middleton, Jonathan
collection PubMed
description The process of transforming data into sounds for auditory display provides unique user experiences and new perspectives for analyzing and interpreting data. A research study for data transformation to sounds based on musical elements, called data-to-music sonification, reveals how musical characteristics can serve analytical purposes with enhanced user engagement. An existing user engagement scale has been applied to measure engagement levels in three conditions within melodic, rhythmic, and chordal contexts. This article reports findings from a user engagement study with musical traits and states the benefits and challenges of using musical characteristics in sonifications. The results can guide the design of future sonifications of multivariable data.
format Online
Article
Text
id pubmed-10448511
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-104485112023-08-25 Data-to-music sonification and user engagement Middleton, Jonathan Hakulinen, Jaakko Tiitinen, Katariina Hella, Juho Keskinen, Tuuli Huuskonen, Pertti Culver, Jeffrey Linna, Juhani Turunen, Markku Ziat, Mounia Raisamo, Roope Front Big Data Big Data The process of transforming data into sounds for auditory display provides unique user experiences and new perspectives for analyzing and interpreting data. A research study for data transformation to sounds based on musical elements, called data-to-music sonification, reveals how musical characteristics can serve analytical purposes with enhanced user engagement. An existing user engagement scale has been applied to measure engagement levels in three conditions within melodic, rhythmic, and chordal contexts. This article reports findings from a user engagement study with musical traits and states the benefits and challenges of using musical characteristics in sonifications. The results can guide the design of future sonifications of multivariable data. Frontiers Media S.A. 2023-08-10 /pmc/articles/PMC10448511/ /pubmed/37636320 http://dx.doi.org/10.3389/fdata.2023.1206081 Text en Copyright © 2023 Middleton, Hakulinen, Tiitinen, Hella, Keskinen, Huuskonen, Culver, Linna, Turunen, Ziat and Raisamo. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Big Data
Middleton, Jonathan
Hakulinen, Jaakko
Tiitinen, Katariina
Hella, Juho
Keskinen, Tuuli
Huuskonen, Pertti
Culver, Jeffrey
Linna, Juhani
Turunen, Markku
Ziat, Mounia
Raisamo, Roope
Data-to-music sonification and user engagement
title Data-to-music sonification and user engagement
title_full Data-to-music sonification and user engagement
title_fullStr Data-to-music sonification and user engagement
title_full_unstemmed Data-to-music sonification and user engagement
title_short Data-to-music sonification and user engagement
title_sort data-to-music sonification and user engagement
topic Big Data
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448511/
https://www.ncbi.nlm.nih.gov/pubmed/37636320
http://dx.doi.org/10.3389/fdata.2023.1206081
work_keys_str_mv AT middletonjonathan datatomusicsonificationanduserengagement
AT hakulinenjaakko datatomusicsonificationanduserengagement
AT tiitinenkatariina datatomusicsonificationanduserengagement
AT hellajuho datatomusicsonificationanduserengagement
AT keskinentuuli datatomusicsonificationanduserengagement
AT huuskonenpertti datatomusicsonificationanduserengagement
AT culverjeffrey datatomusicsonificationanduserengagement
AT linnajuhani datatomusicsonificationanduserengagement
AT turunenmarkku datatomusicsonificationanduserengagement
AT ziatmounia datatomusicsonificationanduserengagement
AT raisamoroope datatomusicsonificationanduserengagement