Cargando…
Adaptive restraint design for a diverse population through machine learning
OBJECTIVE: Using population-based simulations and machine-learning algorithms to develop an adaptive restraint system that accounts for occupant anthropometry variations to further enhance safety balance throughout the whole population. METHODS: Two thousand MADYMO full frontal impact crash simulati...
Autores principales: | Sun, Wenbo, Liu, Jiacheng, Hu, Jingwen, Jin, Judy, Siasoco, Kevin, Zhou, Rongrong, Mccoy, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448517/ https://www.ncbi.nlm.nih.gov/pubmed/37637800 http://dx.doi.org/10.3389/fpubh.2023.1202970 |
Ejemplares similares
-
Data-Driven and Machine-Learning Methods to Project Coronavirus Disease 2019 Pandemic Trend in Eastern Mediterranean
por: Huang, Wenbo, et al.
Publicado: (2021) -
Child restraint use in motor vehicles in Shanghai, China: a multiround cross-sectional observational study
por: Chen, Ting, et al.
Publicado: (2021) -
Predicting population health with machine learning: a scoping review
por: Morgenstern, Jason Denzil, et al.
Publicado: (2020) -
Effects and implementation of a minimized physical restraint program for older adults in nursing homes: A pilot study
por: Wang, Jun, et al.
Publicado: (2022) -
Knowledge, Attitude, and Practice of Nursing Home Staff Regarding Physical Restraint in China: A Cross-Sectional Multicenter Study
por: Li, Yaqin, et al.
Publicado: (2022)