Cargando…
Monolayer Capping Provides Close to Optimal Resistance to Laser Dewetting of Au Films
[Image: see text] Next-generation heat-assisted magnetic recording (HAMR) relies on fast, localized heating of the magnetic medium during the write process. Au plasmonic near-field transducers are an attractive solution to this challenge, but increased thermal stability of Au films is required to im...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448724/ https://www.ncbi.nlm.nih.gov/pubmed/37637971 http://dx.doi.org/10.1021/acsaelm.3c00052 |
_version_ | 1785094797674938368 |
---|---|
author | Murray, Christopher P. Mamyraimov, Daniyar Ali, Mugahid Downing, Clive Povey, Ian M. McCloskey, David O’Regan, David D. Donegan, John F. |
author_facet | Murray, Christopher P. Mamyraimov, Daniyar Ali, Mugahid Downing, Clive Povey, Ian M. McCloskey, David O’Regan, David D. Donegan, John F. |
author_sort | Murray, Christopher P. |
collection | PubMed |
description | [Image: see text] Next-generation heat-assisted magnetic recording (HAMR) relies on fast, localized heating of the magnetic medium during the write process. Au plasmonic near-field transducers are an attractive solution to this challenge, but increased thermal stability of Au films is required to improve long-term reliability. This work compares the effect of nanoscale Al, AlO(x), and Ta capping films on Au thin films with Ti or Ta adhesion layers for use in HAMR and other high-temperature plasmonic applications. Thermal stability is investigated using a bespoke laser dewetting system, and SEM and AFM are extensively used to interrogate the resulting dewet areas. The most effective capping layers are found to be 0.5–1 nm of Al or AlO(x), which can eliminate dewetting under certain conditions. Even one monolayer of AlO(x) is shown to be highly effective in reducing dewetting. In the case of thicker capping layers of Ta and AlO(x), the Au film can easily dewet underneath, leaving an intact capping layer. It is concluded that thinner capping layers are most effective against dewetting as the Au cannot dewet without breaking them and pulling them apart during the dewetting process. A simple model based on energetics considerations is developed, which explains how thinner capping layers can more effectively protect the metal from pore or fissure creation. The model provides some convenient guidelines for choosing both the substrate and capping layer, for a given metal, to maximize the resistance to laser-induced damage. |
format | Online Article Text |
id | pubmed-10448724 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-104487242023-08-25 Monolayer Capping Provides Close to Optimal Resistance to Laser Dewetting of Au Films Murray, Christopher P. Mamyraimov, Daniyar Ali, Mugahid Downing, Clive Povey, Ian M. McCloskey, David O’Regan, David D. Donegan, John F. ACS Appl Electron Mater [Image: see text] Next-generation heat-assisted magnetic recording (HAMR) relies on fast, localized heating of the magnetic medium during the write process. Au plasmonic near-field transducers are an attractive solution to this challenge, but increased thermal stability of Au films is required to improve long-term reliability. This work compares the effect of nanoscale Al, AlO(x), and Ta capping films on Au thin films with Ti or Ta adhesion layers for use in HAMR and other high-temperature plasmonic applications. Thermal stability is investigated using a bespoke laser dewetting system, and SEM and AFM are extensively used to interrogate the resulting dewet areas. The most effective capping layers are found to be 0.5–1 nm of Al or AlO(x), which can eliminate dewetting under certain conditions. Even one monolayer of AlO(x) is shown to be highly effective in reducing dewetting. In the case of thicker capping layers of Ta and AlO(x), the Au film can easily dewet underneath, leaving an intact capping layer. It is concluded that thinner capping layers are most effective against dewetting as the Au cannot dewet without breaking them and pulling them apart during the dewetting process. A simple model based on energetics considerations is developed, which explains how thinner capping layers can more effectively protect the metal from pore or fissure creation. The model provides some convenient guidelines for choosing both the substrate and capping layer, for a given metal, to maximize the resistance to laser-induced damage. American Chemical Society 2023-08-04 /pmc/articles/PMC10448724/ /pubmed/37637971 http://dx.doi.org/10.1021/acsaelm.3c00052 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Murray, Christopher P. Mamyraimov, Daniyar Ali, Mugahid Downing, Clive Povey, Ian M. McCloskey, David O’Regan, David D. Donegan, John F. Monolayer Capping Provides Close to Optimal Resistance to Laser Dewetting of Au Films |
title | Monolayer Capping Provides Close to Optimal Resistance
to Laser Dewetting of Au Films |
title_full | Monolayer Capping Provides Close to Optimal Resistance
to Laser Dewetting of Au Films |
title_fullStr | Monolayer Capping Provides Close to Optimal Resistance
to Laser Dewetting of Au Films |
title_full_unstemmed | Monolayer Capping Provides Close to Optimal Resistance
to Laser Dewetting of Au Films |
title_short | Monolayer Capping Provides Close to Optimal Resistance
to Laser Dewetting of Au Films |
title_sort | monolayer capping provides close to optimal resistance
to laser dewetting of au films |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448724/ https://www.ncbi.nlm.nih.gov/pubmed/37637971 http://dx.doi.org/10.1021/acsaelm.3c00052 |
work_keys_str_mv | AT murraychristopherp monolayercappingprovidesclosetooptimalresistancetolaserdewettingofaufilms AT mamyraimovdaniyar monolayercappingprovidesclosetooptimalresistancetolaserdewettingofaufilms AT alimugahid monolayercappingprovidesclosetooptimalresistancetolaserdewettingofaufilms AT downingclive monolayercappingprovidesclosetooptimalresistancetolaserdewettingofaufilms AT poveyianm monolayercappingprovidesclosetooptimalresistancetolaserdewettingofaufilms AT mccloskeydavid monolayercappingprovidesclosetooptimalresistancetolaserdewettingofaufilms AT oregandavidd monolayercappingprovidesclosetooptimalresistancetolaserdewettingofaufilms AT doneganjohnf monolayercappingprovidesclosetooptimalresistancetolaserdewettingofaufilms |