Cargando…
Role of Soil Biofilms in Clogging and Fate of Pharmaceuticals: A Laboratory-Scale Column Experiment
[Image: see text] Contamination of groundwater with pharmaceutical active compounds (PhACs) increased over the last decades. Potential pathways of PhACs to groundwater include techniques such as irrigation, managed aquifer recharge, or bank filtration as well as natural processes such as losing stre...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448752/ https://www.ncbi.nlm.nih.gov/pubmed/37558209 http://dx.doi.org/10.1021/acs.est.3c02034 |
_version_ | 1785094803329908736 |
---|---|
author | Muñoz-Vega, Edinsson Schulz, Stephan Rodriguez-Escales, Paula Behle, Vera Spada, Lucas Vogel, Alexander L. Sanchez-Vila, Xavier Schüth, Christoph |
author_facet | Muñoz-Vega, Edinsson Schulz, Stephan Rodriguez-Escales, Paula Behle, Vera Spada, Lucas Vogel, Alexander L. Sanchez-Vila, Xavier Schüth, Christoph |
author_sort | Muñoz-Vega, Edinsson |
collection | PubMed |
description | [Image: see text] Contamination of groundwater with pharmaceutical active compounds (PhACs) increased over the last decades. Potential pathways of PhACs to groundwater include techniques such as irrigation, managed aquifer recharge, or bank filtration as well as natural processes such as losing streams of PhACs-loaded source waters. Usually, these systems are characterized by redox-active zones, where microorganisms grow and become immobilized by the formation of biofilms, structures that colonize the pore space and decrease the infiltration capacities, a phenomenon known as bioclogging. The goal of this work is to gain a deeper understanding of the influence of soil biofilms on hydraulic conductivity reduction and the fate of PhACs in the subsurface. For this purpose, we selected three PhACs with different physicochemical properties (carbamazepine, diclofenac, and metoprolol) and performed batch and column experiments using a natural soil, as it is and with the organic matter removed, under different biological conditions. We observed enhanced sorption and biodegradation for all PhACs in the system with higher biological activity. Bioclogging was more prevalent in the absence of organic matter. Our results differ from works using artificial porous media and thus reveal the importance of utilizing natural soils with organic matter in studies designed to assess the role of soil biofilms in bioclogging and the fate of PhACs in soils. |
format | Online Article Text |
id | pubmed-10448752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-104487522023-08-25 Role of Soil Biofilms in Clogging and Fate of Pharmaceuticals: A Laboratory-Scale Column Experiment Muñoz-Vega, Edinsson Schulz, Stephan Rodriguez-Escales, Paula Behle, Vera Spada, Lucas Vogel, Alexander L. Sanchez-Vila, Xavier Schüth, Christoph Environ Sci Technol [Image: see text] Contamination of groundwater with pharmaceutical active compounds (PhACs) increased over the last decades. Potential pathways of PhACs to groundwater include techniques such as irrigation, managed aquifer recharge, or bank filtration as well as natural processes such as losing streams of PhACs-loaded source waters. Usually, these systems are characterized by redox-active zones, where microorganisms grow and become immobilized by the formation of biofilms, structures that colonize the pore space and decrease the infiltration capacities, a phenomenon known as bioclogging. The goal of this work is to gain a deeper understanding of the influence of soil biofilms on hydraulic conductivity reduction and the fate of PhACs in the subsurface. For this purpose, we selected three PhACs with different physicochemical properties (carbamazepine, diclofenac, and metoprolol) and performed batch and column experiments using a natural soil, as it is and with the organic matter removed, under different biological conditions. We observed enhanced sorption and biodegradation for all PhACs in the system with higher biological activity. Bioclogging was more prevalent in the absence of organic matter. Our results differ from works using artificial porous media and thus reveal the importance of utilizing natural soils with organic matter in studies designed to assess the role of soil biofilms in bioclogging and the fate of PhACs in soils. American Chemical Society 2023-08-09 /pmc/articles/PMC10448752/ /pubmed/37558209 http://dx.doi.org/10.1021/acs.est.3c02034 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Muñoz-Vega, Edinsson Schulz, Stephan Rodriguez-Escales, Paula Behle, Vera Spada, Lucas Vogel, Alexander L. Sanchez-Vila, Xavier Schüth, Christoph Role of Soil Biofilms in Clogging and Fate of Pharmaceuticals: A Laboratory-Scale Column Experiment |
title | Role of Soil Biofilms
in Clogging and Fate of Pharmaceuticals:
A Laboratory-Scale Column Experiment |
title_full | Role of Soil Biofilms
in Clogging and Fate of Pharmaceuticals:
A Laboratory-Scale Column Experiment |
title_fullStr | Role of Soil Biofilms
in Clogging and Fate of Pharmaceuticals:
A Laboratory-Scale Column Experiment |
title_full_unstemmed | Role of Soil Biofilms
in Clogging and Fate of Pharmaceuticals:
A Laboratory-Scale Column Experiment |
title_short | Role of Soil Biofilms
in Clogging and Fate of Pharmaceuticals:
A Laboratory-Scale Column Experiment |
title_sort | role of soil biofilms
in clogging and fate of pharmaceuticals:
a laboratory-scale column experiment |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448752/ https://www.ncbi.nlm.nih.gov/pubmed/37558209 http://dx.doi.org/10.1021/acs.est.3c02034 |
work_keys_str_mv | AT munozvegaedinsson roleofsoilbiofilmsincloggingandfateofpharmaceuticalsalaboratoryscalecolumnexperiment AT schulzstephan roleofsoilbiofilmsincloggingandfateofpharmaceuticalsalaboratoryscalecolumnexperiment AT rodriguezescalespaula roleofsoilbiofilmsincloggingandfateofpharmaceuticalsalaboratoryscalecolumnexperiment AT behlevera roleofsoilbiofilmsincloggingandfateofpharmaceuticalsalaboratoryscalecolumnexperiment AT spadalucas roleofsoilbiofilmsincloggingandfateofpharmaceuticalsalaboratoryscalecolumnexperiment AT vogelalexanderl roleofsoilbiofilmsincloggingandfateofpharmaceuticalsalaboratoryscalecolumnexperiment AT sanchezvilaxavier roleofsoilbiofilmsincloggingandfateofpharmaceuticalsalaboratoryscalecolumnexperiment AT schuthchristoph roleofsoilbiofilmsincloggingandfateofpharmaceuticalsalaboratoryscalecolumnexperiment |