Cargando…
Identification of spinal tuberculosis subphenotypes using routine clinical data: a study based on unsupervised machine learning
OBJECTIVE: The identification of spinal tuberculosis subphenotypes is an integral component of precision medicine. However, we lack proper study models to identify subphenotypes in patients with spinal tuberculosis. Here we identified possible subphenotypes of spinal tuberculosis and compared their...
Autores principales: | Yao, Yuanlin, Wu, Shaofeng, Liu, Chong, Zhou, Chenxing, Zhu, Jichong, Chen, Tianyou, Huang, Chengqian, Feng, Sitan, Zhang, Bin, Wu, Siling, Ma, Fengzhi, Liu, Lu, Zhan, Xinli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448834/ https://www.ncbi.nlm.nih.gov/pubmed/37611242 http://dx.doi.org/10.1080/07853890.2023.2249004 |
Ejemplares similares
-
The causal relationship between autoimmune diseases and osteoporosis: a study based on Mendelian randomization
por: Wu, Shaofeng, et al.
Publicado: (2023) -
Proteomic analysis to identification of hypoxia related markers in spinal tuberculosis: a study based on weighted gene co-expression network analysis and machine learning
por: Wu, Shaofeng, et al.
Publicado: (2023) -
Using Machine Learning to Predict Surgical Site Infection After Lumbar Spine Surgery
por: Chen, Tianyou, et al.
Publicado: (2023) -
A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
por: Wu, Shaofeng, et al.
Publicado: (2022) -
External validation of unsupervised COVID-19 clinical phenotypes and their prognostic impact
por: Giacobbe, Daniele Roberto, et al.
Publicado: (2023)