Cargando…
A machine learning strategy for the identification of key in silico descriptors and prediction models for IgG monoclonal antibody developability properties
Identification of favorable biophysical properties for protein therapeutics as part of developability assessment is a crucial part of the preclinical development process. Successful prediction of such properties and bioassay results from calculated in silico features has potential to reduce the time...
Autores principales: | Waight, Andrew B., Prihoda, David, Shrestha, Rojan, Metcalf, Kevin, Bailly, Marc, Ancona, Marco, Widatalla, Talal, Rollins, Zachary, Cheng, Alan C, Bitton, Danny A., Fayadat-Dilman, Laurence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448975/ https://www.ncbi.nlm.nih.gov/pubmed/37610144 http://dx.doi.org/10.1080/19420862.2023.2248671 |
Ejemplares similares
-
BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning
por: Prihoda, David, et al.
Publicado: (2022) -
Differences in human IgG1 and IgG4 S228P monoclonal antibodies viscosity and self-interactions: Experimental assessment and computational predictions of domain interactions
por: Lai, Pin-Kuang, et al.
Publicado: (2021) -
Hyphenation of strong cation exchange chromatography to native mass spectrometry for high throughput online characterization of charge heterogeneity of therapeutic monoclonal antibodies
por: Ma, Fengfei, et al.
Publicado: (2020) -
Hexamerization of Anti-SARS CoV IgG1 Antibodies Improves Neutralization Capacity
por: Pande, Kalyan, et al.
Publicado: (2022) -
Glomerulonephritis with monoclonal IgG deposits
por: Gandhi, K., et al.
Publicado: (2015)