Cargando…
Overcoming the impacts of two-step batch effect correction on gene expression estimation and inference
Nonignorable technical variation is commonly observed across data from multiple experimental runs, platforms, or studies. These so-called batch effects can lead to difficulty in merging data from multiple sources, as they can severely bias the outcome of the analysis. Many groups have developed appr...
Autores principales: | Li, Tenglong, Zhang, Yuqing, Patil, Prasad, Johnson, W Evan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449015/ https://www.ncbi.nlm.nih.gov/pubmed/34893807 http://dx.doi.org/10.1093/biostatistics/kxab039 |
Ejemplares similares
-
Blind estimation and correction of microarray batch effect
por: Varma, Sudhir
Publicado: (2020) -
ComBat-seq: batch effect adjustment for RNA-seq count data
por: Zhang, Yuqing, et al.
Publicado: (2020) -
Alternative empirical Bayes models for adjusting for batch effects in genomic studies
por: Zhang, Yuqing, et al.
Publicado: (2018) -
On the impact of batch effect correction in TCGA isomiR expression data
por: Ibing, Susanne, et al.
Publicado: (2021) -
Active inference and the two-step task
por: Gijsen, Sam, et al.
Publicado: (2022)