Cargando…
Self-supervised pseudo-colorizing of masked cells
Self-supervised learning, which is strikingly referred to as the dark matter of intelligence, is gaining more attention in biomedical applications of deep learning. In this work, we introduce a novel self-supervision objective for the analysis of cells in biomedical microscopy images. We propose tra...
Autores principales: | Wagner, Royden, Lopez, Carlos Fernandez, Stiller, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449109/ https://www.ncbi.nlm.nih.gov/pubmed/37616272 http://dx.doi.org/10.1371/journal.pone.0290561 |
Ejemplares similares
-
Learning from pseudo-lesion: a self-supervised framework for COVID-19 diagnosis
por: Li, Zhongliang, et al.
Publicado: (2023) -
SMG: self-supervised masked graph learning for cancer gene identification
por: Cui, Yan, et al.
Publicado: (2023) -
GAN-Based Image Colorization for Self-Supervised Visual Feature Learning
por: Treneska, Sandra, et al.
Publicado: (2022) -
Pseudo-Synesthesia through Reading Books with Colored Letters
por: Colizoli, Olympia, et al.
Publicado: (2012) -
Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging
por: Wolf, Daniel, et al.
Publicado: (2023)