Cargando…
Comparing feedforward neural networks using independent component analysis on hidden units
Neural networks are widely used for classification and regression tasks, but they do not always perform well, nor explicitly inform us of the rationale for their predictions. In this study we propose a novel method of comparing a pair of different feedforward neural networks, which draws on independ...
Autores principales: | Satoh, Seiya, Yamagishi, Kenta, Takahashi, Tatsuji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449181/ https://www.ncbi.nlm.nih.gov/pubmed/37616212 http://dx.doi.org/10.1371/journal.pone.0290435 |
Ejemplares similares
-
Learning in Feedforward Neural Networks Accelerated by Transfer Entropy
por: Moldovan, Adrian, et al.
Publicado: (2020) -
Integrating geometries of ReLU feedforward neural networks
por: Liu, Yajing, et al.
Publicado: (2023) -
Functional connectome fingerprinting using shallow feedforward neural networks
por: Sarar, Gokce, et al.
Publicado: (2021) -
Comparing feedforward and recurrent neural network architectures with human behavior in artificial grammar learning
por: Alamia, Andrea, et al.
Publicado: (2020) -
Potential Fault Diagnosis Method and Classification Accuracy Detection of IGBT Device Based on Improved Single Hidden Layer Feedforward Neural Network
por: Wu, Jie, et al.
Publicado: (2021)