Cargando…
Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production
Traditional methods of gamete handling, fertilization, and embryo culture often face limitations in efficiency, consistency, and the ability to closely mimic in vivo conditions. This review explores the opportunities presented by microfluidic and 3D culture systems in overcoming these challenges and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Colégio Brasileiro de Reprodução Animal
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449241/ https://www.ncbi.nlm.nih.gov/pubmed/37638255 http://dx.doi.org/10.1590/1984-3143-AR2023-0058 |
_version_ | 1785094912836894720 |
---|---|
author | Ferraz, Marcia de Almeida Monteiro Melo Ferronato, Giuliana de Avila |
author_facet | Ferraz, Marcia de Almeida Monteiro Melo Ferronato, Giuliana de Avila |
author_sort | Ferraz, Marcia de Almeida Monteiro Melo |
collection | PubMed |
description | Traditional methods of gamete handling, fertilization, and embryo culture often face limitations in efficiency, consistency, and the ability to closely mimic in vivo conditions. This review explores the opportunities presented by microfluidic and 3D culture systems in overcoming these challenges and enhancing in vitro embryo production. We discuss the basic principles of microfluidics, emphasizing their inherent advantages such as precise control of fluid flow, reduced reagent consumption, and high-throughput capabilities. Furthermore, we delve into microfluidic devices designed for gamete manipulation, in vitro fertilization, and embryo culture, highlighting innovations such as droplet-based microfluidics and on-chip monitoring. Next, we explore the integration of 3D culture systems, including the use of biomimetic scaffolds and organ-on-a-chip platforms, with a particular focus on the oviduct-on-a-chip. Finally, we discuss the potential of these advanced systems to improve embryo production outcomes and advance our understanding of early embryo development. By leveraging the unique capabilities of microfluidics and 3D culture systems, we foresee significant advancements in the efficiency, effectiveness, and clinical success of in vitro embryo production. |
format | Online Article Text |
id | pubmed-10449241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Colégio Brasileiro de Reprodução Animal |
record_format | MEDLINE/PubMed |
spelling | pubmed-104492412023-08-25 Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production Ferraz, Marcia de Almeida Monteiro Melo Ferronato, Giuliana de Avila Anim Reprod Thematic Section: 36th Annual Meeting of the Brazilian Embryo Technology Society (SBTE) Traditional methods of gamete handling, fertilization, and embryo culture often face limitations in efficiency, consistency, and the ability to closely mimic in vivo conditions. This review explores the opportunities presented by microfluidic and 3D culture systems in overcoming these challenges and enhancing in vitro embryo production. We discuss the basic principles of microfluidics, emphasizing their inherent advantages such as precise control of fluid flow, reduced reagent consumption, and high-throughput capabilities. Furthermore, we delve into microfluidic devices designed for gamete manipulation, in vitro fertilization, and embryo culture, highlighting innovations such as droplet-based microfluidics and on-chip monitoring. Next, we explore the integration of 3D culture systems, including the use of biomimetic scaffolds and organ-on-a-chip platforms, with a particular focus on the oviduct-on-a-chip. Finally, we discuss the potential of these advanced systems to improve embryo production outcomes and advance our understanding of early embryo development. By leveraging the unique capabilities of microfluidics and 3D culture systems, we foresee significant advancements in the efficiency, effectiveness, and clinical success of in vitro embryo production. Colégio Brasileiro de Reprodução Animal 2023-08-04 /pmc/articles/PMC10449241/ /pubmed/37638255 http://dx.doi.org/10.1590/1984-3143-AR2023-0058 Text en https://creativecommons.org/licenses/by/4.0/Copyright © The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Thematic Section: 36th Annual Meeting of the Brazilian Embryo Technology Society (SBTE) Ferraz, Marcia de Almeida Monteiro Melo Ferronato, Giuliana de Avila Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production |
title | Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production |
title_full | Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production |
title_fullStr | Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production |
title_full_unstemmed | Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production |
title_short | Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production |
title_sort | opportunities involving microfluidics and 3d culture systems to the in vitro embryo production |
topic | Thematic Section: 36th Annual Meeting of the Brazilian Embryo Technology Society (SBTE) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449241/ https://www.ncbi.nlm.nih.gov/pubmed/37638255 http://dx.doi.org/10.1590/1984-3143-AR2023-0058 |
work_keys_str_mv | AT ferrazmarciadealmeidamonteiromelo opportunitiesinvolvingmicrofluidicsand3dculturesystemstotheinvitroembryoproduction AT ferronatogiulianadeavila opportunitiesinvolvingmicrofluidicsand3dculturesystemstotheinvitroembryoproduction |