Cargando…
The feasibility of early detecting coronary artery disease using deep learning-based algorithm based on electrocardiography
Background: Coronary Artery Disease (CAD) is a major cause of morbidity and mortality, yet it is frequently asymptomatic in the early stages and hence goes undetected. Objective: We aimed to develop a novel artificial intelligence-based approach for early detection of CAD patients based solely on el...
Autores principales: | Tang, Panli, Wang, Qi, Ouyang, Hua, Yang, Songran, Hua, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449295/ https://www.ncbi.nlm.nih.gov/pubmed/37186897 http://dx.doi.org/10.18632/aging.204688 |
Ejemplares similares
-
Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography
por: Kwon, Joon‐Myoung, et al.
Publicado: (2020) -
Development and Validation of Deep-Learning Algorithm for Electrocardiography-Based Heart Failure Identification
por: Kwon, Joon-myoung, et al.
Publicado: (2019) -
A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development
por: Lin, Chin-Sheng, et al.
Publicado: (2020) -
Feasibility of the deep learning method for estimating the ventilatory threshold with electrocardiography data
por: Miura, Kotaro, et al.
Publicado: (2020) -
Intelligent Algorithm-Based Electrocardiography to Predict Atrial Fibrillation after Coronary Artery Bypass Grafting in the Elderly
por: Feng, Tao, et al.
Publicado: (2022)