Cargando…

miRNA155-5P participated in DDX3X targeted regulation of pyroptosis to attenuate renal ischemia/reperfusion injury

Background: Renal ischemia/reperfusion injury (IRI) induced pathological damage to renal microvessels and tubular epithelial cells through multiple factors. However, studies investigated whether miRNA155-5P targeted DDX3X to attenuate pyroptosis were scarce. Results: The expression of pyroptosis-rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yan, Lv, Xinghua, Fan, Qian, Chen, Feng, Wan, Zhanhai, Nibaruta, Janvier, Wang, Hao, Wang, Xiaoxia, Yuan, Yuan, Guo, Wenwen, Leng, Yufang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449305/
https://www.ncbi.nlm.nih.gov/pubmed/37142295
http://dx.doi.org/10.18632/aging.204692
Descripción
Sumario:Background: Renal ischemia/reperfusion injury (IRI) induced pathological damage to renal microvessels and tubular epithelial cells through multiple factors. However, studies investigated whether miRNA155-5P targeted DDX3X to attenuate pyroptosis were scarce. Results: The expression of pyroptosis-related proteins (caspase-1, interleukin-1β (IL-1β), NOD-like receptor family pyrin domain containing 3 (NLRP3), and IL-18) were up-regulated in the IRI group. Additionally, miR-155-5p was higher in the IRI group comparing with the sham group. The DDX3X was inhibited by the miR-155-5p mimic more than in the other groups. DEAD-box Helicase 3 X-Linked (DDX3X), NLRP3, caspase-1, IL-1β, IL-18, LDH, and pyroptosis rates were higher in all H/R groups than in the control group. These indicators were higher in the miR-155-5p mimic group than in the H/R and the miR-155-5p mimic negative control (NC) group. Conclusions: Current findings suggested that miR-155-5p decreased the inflammation involved in pyroptosis by downregulating the DDX3X/NLRP3/caspase-1 pathway. Methods: Using the models of IRI in mouse and the hypoxia-reoxygenation (H/R)-induced injury in human renal proximal tubular epithelial cells (HK-2 cells), we analyzed the changes in renal pathology and the expression of factors correlated with pyroptosis and DDX3X. Real-time reverse transcription polymerase chain reaction (RT-PCR) detected miRNAs and enzyme-linked immunosorbent assay (ELISA) was used to detect lactic dehydrogenase activity. The StarBase and luciferase assays examined the specific interplay of DDX3X and miRNA155-5P. In the IRI group, severe renal tissue damage, swelling, and inflammation were examined.