Cargando…
An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images
PURPOSE: This study focuses on assessing the performance of active learning techniques to train a brain MRI glioma segmentation model. METHODS: The publicly available training dataset provided for the 2021 RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge was used in this study, consisting...
Autores principales: | Boehringer, Andrew S., Sanaat, Amirhossein, Arabi, Hossein, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449747/ https://www.ncbi.nlm.nih.gov/pubmed/37620554 http://dx.doi.org/10.1186/s13244-023-01487-6 |
Ejemplares similares
-
Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging
por: Sanaat, Amirhossein, et al.
Publicado: (2021) -
MRI‐guided attenuation correction in torso PET/MRI: Assessment of segmentation‐, atlas‐, and deep learning‐based approaches in the presence of outliers
por: Arabi, Hossein, et al.
Publicado: (2021) -
Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy
por: Arabi, Hossein, et al.
Publicado: (2020)