Cargando…
Evaluating large language models on medical evidence summarization
Recent advances in large language models (LLMs) have demonstrated remarkable successes in zero- and few-shot performance on various downstream tasks, paving the way for applications in high-stakes domains. In this study, we systematically examine the capabilities and limitations of LLMs, specificall...
Autores principales: | Tang, Liyan, Sun, Zhaoyi, Idnay, Betina, Nestor, Jordan G., Soroush, Ali, Elias, Pierre A., Xu, Ziyang, Ding, Ying, Durrett, Greg, Rousseau, Justin F., Weng, Chunhua, Peng, Yifan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449915/ https://www.ncbi.nlm.nih.gov/pubmed/37620423 http://dx.doi.org/10.1038/s41746-023-00896-7 |
Ejemplares similares
-
Evaluating Large Language Models on Medical Evidence Summarization
por: Tang, Liyan, et al.
Publicado: (2023) -
The suitability of UMLS and SNOMED-CT for encoding outcome concepts
por: Newbury, Abigail, et al.
Publicado: (2023) -
Gene Set Summarization using Large Language Models
por: Joachimiak, Marcin P., et al.
Publicado: (2023) -
Clinical Text Summarization: Adapting Large Language Models Can Outperform Human Experts
por: Van Veen, Dave, et al.
Publicado: (2023) -
Trends in anesthesiology research: a machine learning approach to theme discovery and summarization
por: Rusanov, Alexander, et al.
Publicado: (2018)