Cargando…
MiR-22-3p suppresses NSCLC cell migration and EMT via targeting RAC1 expression
Previous studies have demonstrated the tumor-suppressive function of microRNA-22-3p (miR-22-3p) in several cancers, whereas the significance of miR-22-3p in non-small cell lung cancer (NSCLC) remains unclear. In this study, we explored the biological function and molecular mechanism of miR-22-3p in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449966/ https://www.ncbi.nlm.nih.gov/pubmed/37620594 http://dx.doi.org/10.1007/s10142-023-01211-z |
Sumario: | Previous studies have demonstrated the tumor-suppressive function of microRNA-22-3p (miR-22-3p) in several cancers, whereas the significance of miR-22-3p in non-small cell lung cancer (NSCLC) remains unclear. In this study, we explored the biological function and molecular mechanism of miR-22-3p in NSCLC cells. First, we assessed the expression of miR-22-3p in NSCLC tissues and cells based on RT-qPCR and TCGA database. Compared with normal lung tissues and cells, miR-22-3p expression was dramatically decreased in lung cancer tissues and cells. miR-22-3p expression was also correlated with lymph node metastasis and tumor size, but not TNM stages. We further explored the in vitro function of miR-22-3p on the migration and epithelial–mesenchymal transition (EMT) of NSCLC cells. The results showed that overexpression of miR-22-3p suppressed the migration and EMT of NSCLC cells, whereas silencing miR-22-3p showed the opposite effect. Luciferase assay demonstrated that RAS-related C3 botulinum toxin substrate 1 (RAC1) was the target gene for miR-22-3p. Mechanistically, we demonstrated that miR-22-3p suppressed the cell migration and EMT via downregulation of RAC1 because the inhibitory effect of miR-22-3p on cell migration and EMT of NSCLC cells was reversed by RAC1 overexpression. Based on these novel data, the miR-22-3p/RAC1 axis may be an alternative target in the therapeutic intervention of NSCLC. |
---|