Cargando…
Prospective phenotyping of CHAMP1 disorder indicates that coding mutations may not act through haploinsufficiency
CHAMP1 disorder is a genetic neurodevelopmental condition caused by mutations in the CHAMP1 gene that result in premature termination codons. The disorder is associated with intellectual disability, medical comorbidities, and dysmorphic features. Deletions of the CHAMP1 gene, as part of 13q34 deleti...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449971/ https://www.ncbi.nlm.nih.gov/pubmed/37454340 http://dx.doi.org/10.1007/s00439-023-02578-6 |
Sumario: | CHAMP1 disorder is a genetic neurodevelopmental condition caused by mutations in the CHAMP1 gene that result in premature termination codons. The disorder is associated with intellectual disability, medical comorbidities, and dysmorphic features. Deletions of the CHAMP1 gene, as part of 13q34 deletion syndrome, have been briefly described with the suggestion of a milder clinical phenotype. To date, no studies have directly assessed differences between individuals with mutations in CHAMP1 to those with deletions of the gene. We completed prospective clinical evaluations of 16 individuals with mutations and eight with deletions in CHAMP1. Analyses revealed significantly lower adaptive functioning across all domains assessed (i.e., communication, daily living skills, socialization, and motor skills) in the mutation group. Developmental milestones and medical features further showed difference between groups. The phenotypes associated with mutations, as compared to deletions, indicate likely difference in pathogenesis between groups, where deletions are acting through CHAMP1 haploinsufficiency and mutations are acting through dominant negative or gain of function mechanisms, leading to a more severe clinical phenotype. Understanding this pathogenesis is important to the future of novel therapies for CHAMP1 disorder and illustrates that mechanistic understanding of mutations must be carefully considered prior to treatment development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00439-023-02578-6. |
---|