Cargando…
An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
We show that the topological entropy of the billiard map in a Bunimovich stadium is at most [Formula: see text] .
Autores principales: | Činč, Jernej, Troubetzkoy, Serge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449974/ https://www.ncbi.nlm.nih.gov/pubmed/37635844 http://dx.doi.org/10.1007/s10955-023-03142-2 |
Ejemplares similares
-
Interaction between a robot and Bunimovich stadium billiards
por: Vasconcelos, J. V. A., et al.
Publicado: (2022) -
Distribution of eigenmodes in a superconducting stadium billiard with chaotic dynamics
por: Gräf, H D, et al.
Publicado: (1992) -
Invariant manifolds, entropy and billiards; smooth maps with singularities
por: Katok, Anatole, et al.
Publicado: (1986) -
Geometry and billiards
por: Tabachnikov, Serge
Publicado: (2005) -
Exterior Billiards: Systems with Impacts Outside Bounded Domains
por: Plakhov, Alexander
Publicado: (2013)