Cargando…

Overlapping pathogenic de novo CNVs in neurodevelopmental disorders and congenital anomalies impacting constraint genes regulating early development

Neurodevelopmental disorders (NDDs) and congenital anomalies (CAs) are rare disorders with complex etiology. In this study, we investigated the less understood genomic overlap of copy number variants (CNVs) in two large cohorts of NDD and CA patients to identify de novo CNVs and candidate genes asso...

Descripción completa

Detalles Bibliográficos
Autores principales: Safizadeh Shabestari, Seyed Ali, Nassir, Nasna, Sopariwala, Samana, Karimov, Islam, Tambi, Richa, Zehra, Binte, Kosaji, Noor, Akter, Hosneara, Berdiev, Bakhrom K., Uddin, Mohammed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449996/
https://www.ncbi.nlm.nih.gov/pubmed/36383254
http://dx.doi.org/10.1007/s00439-022-02482-5
Descripción
Sumario:Neurodevelopmental disorders (NDDs) and congenital anomalies (CAs) are rare disorders with complex etiology. In this study, we investigated the less understood genomic overlap of copy number variants (CNVs) in two large cohorts of NDD and CA patients to identify de novo CNVs and candidate genes associated with both phenotypes. We analyzed clinical microarray CNV data from 10,620 NDD and 3176 CA cases annotated using Horizon platform of GenomeArc Analytics and applied rigorous downstream analysis to evaluate overlapping genes from NDD and CA CNVs. Out of 13,796 patients, only 195 cases contained 218 validated de novo CNVs. Eighteen percent (31/170) de novo CNVs in NDD cases and 40% (19/48) de novo CNVs in CA cases contained genomic overlaps impacting developmentally constraint genes. Seventy-nine constraint genes (10.1% non-OMIM entries) were found to have significantly enriched genomic overlap within rare de novo pathogenic deletions (P value = 0.01, OR = 1.58) and 45 constraint genes (13.3% non-OMIM entries) within rare de novo pathogenic duplications (P value = 0.01, OR = 1.97). Analysis of spatiotemporal transcriptome demonstrated both pathogenic deletion and duplication genes to be highly expressed during the prenatal stage in human developmental brain (P value = 4.95 X 10(–6)). From the list of overlapping genes, EHMT1, an interesting known NDD gene encompassed pathogenic deletion CNVs from both NDD and CA patients, whereas FAM189A1, and FSTL5 are new candidate genes from non-OMIM entries. In summary, we have identified constraint overlapping genes from CNVs (including de novo) in NDD and CA patients that have the potential to play a vital role in common disease etiology. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00439-022-02482-5.