Cargando…

Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif

Nucleic acids not only form the basis of heredity, but are increasingly a source of novel nano-structures, -devices and drugs. This has spurred the development of chemically modified alternatives (xeno nucleic acids (XNAs)) comprising chemical configurations not found in nature to extend their chemi...

Descripción completa

Detalles Bibliográficos
Autores principales: Schofield, Peter, Taylor, Alexander I, Rihon, Jérôme, Peña Martinez, Cristian D, Zinn, Sacha, Mattelaer, Charles-Alexandre, Jackson, Jennifer, Dhaliwal, Gurpreet, Schepers, Guy, Herdewijn, Piet, Lescrinier, Eveline, Christ, Daniel, Holliger, Philipp
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450178/
https://www.ncbi.nlm.nih.gov/pubmed/37439359
http://dx.doi.org/10.1093/nar/gkad592
_version_ 1785095140948312064
author Schofield, Peter
Taylor, Alexander I
Rihon, Jérôme
Peña Martinez, Cristian D
Zinn, Sacha
Mattelaer, Charles-Alexandre
Jackson, Jennifer
Dhaliwal, Gurpreet
Schepers, Guy
Herdewijn, Piet
Lescrinier, Eveline
Christ, Daniel
Holliger, Philipp
author_facet Schofield, Peter
Taylor, Alexander I
Rihon, Jérôme
Peña Martinez, Cristian D
Zinn, Sacha
Mattelaer, Charles-Alexandre
Jackson, Jennifer
Dhaliwal, Gurpreet
Schepers, Guy
Herdewijn, Piet
Lescrinier, Eveline
Christ, Daniel
Holliger, Philipp
author_sort Schofield, Peter
collection PubMed
description Nucleic acids not only form the basis of heredity, but are increasingly a source of novel nano-structures, -devices and drugs. This has spurred the development of chemically modified alternatives (xeno nucleic acids (XNAs)) comprising chemical configurations not found in nature to extend their chemical and functional scope. XNAs can be evolved into ligands (XNA aptamers) that bind their targets with high affinity and specificity. However, detailed investigations into structural and functional aspects of XNA aptamers have been limited. Here we describe a detailed structure-function analysis of LYS-S8-19, a 1′,5′-anhydrohexitol nucleic acid (HNA) aptamer to hen egg-white lysozyme (HEL). Mapping of the aptamer interaction interface with its cognate HEL target antigen revealed interaction epitopes, affinities, kinetics and hot-spots of binding energy similar to protein ligands such as anti-HEL-nanobodies. Truncation analysis and molecular dynamics (MD) simulations suggest that the HNA aptamer core motif folds into a novel and not previously observed HNA tertiary structure, comprising non-canonical hT-hA-hT/hT-hT-hT triplet and hG4-quadruplex structures, consistent with its recognition by two different G4-specific antibodies.
format Online
Article
Text
id pubmed-10450178
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-104501782023-08-26 Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif Schofield, Peter Taylor, Alexander I Rihon, Jérôme Peña Martinez, Cristian D Zinn, Sacha Mattelaer, Charles-Alexandre Jackson, Jennifer Dhaliwal, Gurpreet Schepers, Guy Herdewijn, Piet Lescrinier, Eveline Christ, Daniel Holliger, Philipp Nucleic Acids Res Chemical Biology and Nucleic Acid Chemistry Nucleic acids not only form the basis of heredity, but are increasingly a source of novel nano-structures, -devices and drugs. This has spurred the development of chemically modified alternatives (xeno nucleic acids (XNAs)) comprising chemical configurations not found in nature to extend their chemical and functional scope. XNAs can be evolved into ligands (XNA aptamers) that bind their targets with high affinity and specificity. However, detailed investigations into structural and functional aspects of XNA aptamers have been limited. Here we describe a detailed structure-function analysis of LYS-S8-19, a 1′,5′-anhydrohexitol nucleic acid (HNA) aptamer to hen egg-white lysozyme (HEL). Mapping of the aptamer interaction interface with its cognate HEL target antigen revealed interaction epitopes, affinities, kinetics and hot-spots of binding energy similar to protein ligands such as anti-HEL-nanobodies. Truncation analysis and molecular dynamics (MD) simulations suggest that the HNA aptamer core motif folds into a novel and not previously observed HNA tertiary structure, comprising non-canonical hT-hA-hT/hT-hT-hT triplet and hG4-quadruplex structures, consistent with its recognition by two different G4-specific antibodies. Oxford University Press 2023-07-13 /pmc/articles/PMC10450178/ /pubmed/37439359 http://dx.doi.org/10.1093/nar/gkad592 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Chemical Biology and Nucleic Acid Chemistry
Schofield, Peter
Taylor, Alexander I
Rihon, Jérôme
Peña Martinez, Cristian D
Zinn, Sacha
Mattelaer, Charles-Alexandre
Jackson, Jennifer
Dhaliwal, Gurpreet
Schepers, Guy
Herdewijn, Piet
Lescrinier, Eveline
Christ, Daniel
Holliger, Philipp
Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif
title Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif
title_full Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif
title_fullStr Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif
title_full_unstemmed Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif
title_short Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif
title_sort characterization of an hna aptamer suggests a non-canonical g-quadruplex motif
topic Chemical Biology and Nucleic Acid Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450178/
https://www.ncbi.nlm.nih.gov/pubmed/37439359
http://dx.doi.org/10.1093/nar/gkad592
work_keys_str_mv AT schofieldpeter characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT tayloralexanderi characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT rihonjerome characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT penamartinezcristiand characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT zinnsacha characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT mattelaercharlesalexandre characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT jacksonjennifer characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT dhaliwalgurpreet characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT schepersguy characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT herdewijnpiet characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT lescriniereveline characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT christdaniel characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif
AT holligerphilipp characterizationofanhnaaptamersuggestsanoncanonicalgquadruplexmotif