Cargando…
Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data
Single-cell sequencing technology enables the simultaneous capture of multiomic data from multiple cells. The captured data can be represented by tensors, i.e. the higher-rank matrices. However, the existing analysis tools often take the data as a collection of two-order matrices, renouncing the cor...
Autores principales: | Wang, Ruo Han, Wang, Jianping, Li, Shuai Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450184/ https://www.ncbi.nlm.nih.gov/pubmed/37403780 http://dx.doi.org/10.1093/nar/gkad570 |
Ejemplares similares
-
Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis
por: Taguchi, Y-h., et al.
Publicado: (2021) -
Tensor-Decomposition-Based Unsupervised Feature Extraction Applied to Prostate Cancer Multiomics Data
por: Taguchi, Y-h., et al.
Publicado: (2020) -
Tensor Decomposition-based Feature Extraction and Classification to Detect Natural Selection from Genomic Data
por: Amin, Md Ruhul, et al.
Publicado: (2023) -
Network embedding-based representation learning for single cell RNA-seq data
por: Li, Xiangyu, et al.
Publicado: (2017) -
Probabilistic error correction for RNA sequencing
por: Le, Hai-Son, et al.
Publicado: (2013)