Cargando…
Optimization of urban emergency support material distribution under major public health emergencies based on improved sparrow search algorithm
The outbreak of major public health emergencies such as the coronavirus epidemic has put forward new requirements for urban emergency management procedures. Accuracy and effective distribution model of emergency support materials, as an effective tool to inhibit the deterioration of the public healt...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450338/ https://www.ncbi.nlm.nih.gov/pubmed/37201921 http://dx.doi.org/10.1177/00368504231175328 |
Sumario: | The outbreak of major public health emergencies such as the coronavirus epidemic has put forward new requirements for urban emergency management procedures. Accuracy and effective distribution model of emergency support materials, as an effective tool to inhibit the deterioration of the public health sector, have gradually become a research hotspot. The distribution of urban emergency support devices, under the secondary supply chain structure of “material transfer center-demand point,” which may involve confusing demands, is studied to determine the actual situation of fuzzy requests under the impact of an epidemic outbreak. An optimization model of urban emergency support material distribution, based on Credibility theory, is first constructed. Then an improved sparrow search algorithm, ISSA, was designed by introducing Sobol sequence, Cauchy variation and bird swarm algorithm into the structure of the classical SSA. In addition, numerical validation and standard test set validation were carried out and the experimental results showed that the introduced improved strategy effectively improved the global search capability of the algorithm. Furthermore, simulation experiments are conducted, based on Shanghai, and the comparison with existing cutting-edge algorithms shows that the designed algorithm has stronger superiority and robustness. And the simulation results show that the designed algorithm can reduce vehicle cost by 4.83%, time cost by 13.80%, etc. compared to other algorithms. Finally, the impact of preference value on the distribution of emergency support materials is analyzed to help decision-makers to develop reasonable and effective distribution strategies according to the impact of major public health emergencies. The results of the study provide a practical reference for the solution of urban emergency support materials distribution problems. |
---|