Cargando…

Assessing Vulnerability to Surges in Suicide-Related Tweets Using Japan Census Data: Case-Only Study

BACKGROUND: As the use of social media becomes more widespread, its impact on health cannot be ignored. However, limited research has been conducted on the relationship between social media and suicide. Little is known about individuals’ vulnerable to suicide, especially when social media suicide in...

Descripción completa

Detalles Bibliográficos
Autor principal: Mitsuhashi, Toshiharu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450538/
https://www.ncbi.nlm.nih.gov/pubmed/37561553
http://dx.doi.org/10.2196/47798
Descripción
Sumario:BACKGROUND: As the use of social media becomes more widespread, its impact on health cannot be ignored. However, limited research has been conducted on the relationship between social media and suicide. Little is known about individuals’ vulnerable to suicide, especially when social media suicide information is extremely prevalent. OBJECTIVE: This study aims to identify the characteristics underlying individuals’ vulnerability to suicide brought about by an increase in suicide-related tweets, thereby contributing to public health. METHODS: A case-only design was used to investigate vulnerability to suicide using individual data of people who died by suicide and tweet data from January 1, 2011, through December 31, 2014. Mortality data were obtained from Japanese government statistics, and tweet data were provided by a commercial service. Tweet data identified the days when suicide-related tweets surged, and the date-keyed merging was performed by considering 3 and 7 lag days. For the merged data set for analysis, the logistic regression model was fitted with one of the personal characteristics of interest as a dependent variable and the dichotomous exposure variable. This analysis was performed to estimate the interaction between the surges in suicide-related tweets and personal characteristics of the suicide victims as case-only odds ratios (ORs) with 95% CIs. For the sensitivity analysis, unexpected deaths other than suicide were considered. RESULTS: During the study period, there were 159,490 suicides and 115,072 unexpected deaths, and the number of suicide-related tweets was 2,804,999. Following the 3-day lag of a highly tweeted day, there were significant interactions for those who were aged 40 years or younger (OR 1.09, 95% CI 1.03-1.15), male (OR 1.12, 95% CI 1.07-1.18), divorced (OR 1.11, 95% CI 1.03 1.19), unemployed (OR 1.12, 95% CI 1.02-1.22), and living in urban areas (OR 1.26, 95% CI 1.17 1.35). By contrast, widowed individuals had significantly lower interactions (OR 0.83, 95% CI 0.77-0.89). Except for unemployment, significant relationships were also observed for the 7-day lag. For the sensitivity analysis, no significant interactions were observed for other unexpected deaths in the 3-day lag, and only the widowed had a significantly larger interaction than those who were married (OR 1.08, 95% CI 1.02-1.15) in the 7-day lag. CONCLUSIONS: This study revealed the interactions of personal characteristics associated with susceptibility to suicide-related tweets. In addition, a few significant relationships were observed in the sensitivity analysis, suggesting that such an interaction is specific to suicide deaths. In other words, individuals with these characteristics, such as being young, male, unemployed, and divorced, may be vulnerable to surges in suicide-related tweets. Thus, minimizing public health strain by identifying people who are vulnerable and susceptible to a surge in suicide-related information on the internet is necessary.