Cargando…
A Fast and Minimal System to Identify Depression Using Smartphones: Explainable Machine Learning–Based Approach
BACKGROUND: Existing robust, pervasive device-based systems developed in recent years to detect depression require data collected over a long period and may not be effective in cases where early detection is crucial. Additionally, due to the requirement of running systems in the background for prolo...
Autores principales: | Ahmed, Md Sabbir, Ahmed, Nova |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450542/ https://www.ncbi.nlm.nih.gov/pubmed/37561568 http://dx.doi.org/10.2196/28848 |
Ejemplares similares
-
Depressive Symptoms Feature-Based Machine Learning Approach to Predicting Depression Using Smartphone
por: Hong, Juyoung, et al.
Publicado: (2022) -
Explainable machine learning for diffraction patterns
por: Nawaz, Shah, et al.
Publicado: (2023) -
Thematic Analysis on User Reviews for Depression and Anxiety Chatbot Apps: Machine Learning Approach
por: Ahmed, Arfan, et al.
Publicado: (2022) -
Prediction of Problematic Smartphone Use: A Machine Learning Approach
por: Lee, Juyeong, et al.
Publicado: (2021) -
New approaches using machine learning for fast shower simulation in ATLAS
por: Hasib, Ahmed, et al.
Publicado: (2018)