Cargando…

Four-layer folding framework: design, GAP synthesis, and aggregation-induced emission

The design and synthesis of a type of [1 + 4 + 2] four-layer framework have been conducted by taking advantage of Suzuki–Miyaura cross-coupling and group-assisted purification (GAP) chemistry. The optimized coupling of double-layer diboronic esters with 1-bromo-naphth-2-yl phosphine oxides resulted...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Sai, Chen, Daixiang, Wang, Jia-Yin, Yan, Shenghu, Li, Guigen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450629/
https://www.ncbi.nlm.nih.gov/pubmed/37638105
http://dx.doi.org/10.3389/fchem.2023.1259609
Descripción
Sumario:The design and synthesis of a type of [1 + 4 + 2] four-layer framework have been conducted by taking advantage of Suzuki–Miyaura cross-coupling and group-assisted purification (GAP) chemistry. The optimized coupling of double-layer diboronic esters with 1-bromo-naphth-2-yl phosphine oxides resulted in a series of multilayer folding targets, showing a broad scope of substrates and moderate to excellent yields. The final products were purified using group-assisted purification chemistry/technology, achieved simply by washing crude products with 95% EtOH without the use of chromatography and recrystallization. The structures were fully characterized and assigned by performing X-ray crystallographic analysis. UV–vis absorption, photoluminescence (PL), and aggregation-induced emission (AIE) were studied for the resulting multilayer folding products.