Cargando…
Amino acid–dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti
Aedes aegypti female mosquitoes require vertebrate blood for their egg production and consequently they become vectors of devastating human diseases. Amino acids (AAs) and nutrients originating from a blood meal activate vitellogenesis and fuel embryo development of anautogenous mosquitoes. Insulin-...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450652/ https://www.ncbi.nlm.nih.gov/pubmed/37579141 http://dx.doi.org/10.1073/pnas.2303234120 |
_version_ | 1785095248008970240 |
---|---|
author | Ling, Lin Raikhel, Alexander S. |
author_facet | Ling, Lin Raikhel, Alexander S. |
author_sort | Ling, Lin |
collection | PubMed |
description | Aedes aegypti female mosquitoes require vertebrate blood for their egg production and consequently they become vectors of devastating human diseases. Amino acids (AAs) and nutrients originating from a blood meal activate vitellogenesis and fuel embryo development of anautogenous mosquitoes. Insulin-like peptides (ILPs) are indispensable in reproducing female mosquitoes, regulating glycogen and lipid metabolism, and other essential functions. However, how ILPs coordinate their action in response to the AA influx in mosquito reproduction was unknown. We report here that the AA/Target of Rapamycin (TOR) signaling pathway regulates ILPs through GATA transcription factors (TFs). AA infusion combined with RNA-interference TOR silencing of revealed their differential action on ILPs, elevating circulating levels of several ILPs but inhibiting others, in the female mosquito. Experiments involving isoform-specific CRISPR-Cas9 genomic editing and chromatin immunoprecipitation assays showed that the expression of ilp4ilp6, and ilp7 genes was inhibited by the GATA repressor (GATAr) isoform in response to low AA-TOR signaling, while the expression of ilp1ilp2ilp3ilp5, and ilp8 genes was activated by the GATA activator isoform after a blood meal in response to the increased AA-TOR signaling. FoxO, a downstream TF in the insulin pathway, was involved in the TOR-GATAr-mediated repression of ilp4ilp6, and ilp7 genes. This work uncovered how AA/TOR signaling controls the ILP pathway in modulation of metabolic requirements of reproducing female mosquitoes. |
format | Online Article Text |
id | pubmed-10450652 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-104506522023-08-26 Amino acid–dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti Ling, Lin Raikhel, Alexander S. Proc Natl Acad Sci U S A Biological Sciences Aedes aegypti female mosquitoes require vertebrate blood for their egg production and consequently they become vectors of devastating human diseases. Amino acids (AAs) and nutrients originating from a blood meal activate vitellogenesis and fuel embryo development of anautogenous mosquitoes. Insulin-like peptides (ILPs) are indispensable in reproducing female mosquitoes, regulating glycogen and lipid metabolism, and other essential functions. However, how ILPs coordinate their action in response to the AA influx in mosquito reproduction was unknown. We report here that the AA/Target of Rapamycin (TOR) signaling pathway regulates ILPs through GATA transcription factors (TFs). AA infusion combined with RNA-interference TOR silencing of revealed their differential action on ILPs, elevating circulating levels of several ILPs but inhibiting others, in the female mosquito. Experiments involving isoform-specific CRISPR-Cas9 genomic editing and chromatin immunoprecipitation assays showed that the expression of ilp4ilp6, and ilp7 genes was inhibited by the GATA repressor (GATAr) isoform in response to low AA-TOR signaling, while the expression of ilp1ilp2ilp3ilp5, and ilp8 genes was activated by the GATA activator isoform after a blood meal in response to the increased AA-TOR signaling. FoxO, a downstream TF in the insulin pathway, was involved in the TOR-GATAr-mediated repression of ilp4ilp6, and ilp7 genes. This work uncovered how AA/TOR signaling controls the ILP pathway in modulation of metabolic requirements of reproducing female mosquitoes. National Academy of Sciences 2023-08-14 2023-08-22 /pmc/articles/PMC10450652/ /pubmed/37579141 http://dx.doi.org/10.1073/pnas.2303234120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Ling, Lin Raikhel, Alexander S. Amino acid–dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti |
title | Amino acid–dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti |
title_full | Amino acid–dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti |
title_fullStr | Amino acid–dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti |
title_full_unstemmed | Amino acid–dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti |
title_short | Amino acid–dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti |
title_sort | amino acid–dependent regulation of insulin-like peptide signaling is mediated by tor and gata factors in the disease vector mosquito aedes aegypti |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450652/ https://www.ncbi.nlm.nih.gov/pubmed/37579141 http://dx.doi.org/10.1073/pnas.2303234120 |
work_keys_str_mv | AT linglin aminoaciddependentregulationofinsulinlikepeptidesignalingismediatedbytorandgatafactorsinthediseasevectormosquitoaedesaegypti AT raikhelalexanders aminoaciddependentregulationofinsulinlikepeptidesignalingismediatedbytorandgatafactorsinthediseasevectormosquitoaedesaegypti |