Cargando…

A new evaluation and prediction model of sound quality of high-speed permanent magnet motor based on genetic algorithm-radial basis function artificial neural network

Sound quality (SQ) has become an important index to measure the competitiveness of motor products. To better evaluate and optimize SQ, a novelty SQ evaluation and prediction model of high-speed permanent magnet motor (HSPMM) with better accuracy is presented in this research. Six psychoacoustic para...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Kai, Zhang, Guangming, Zhang, Wenyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450743/
https://www.ncbi.nlm.nih.gov/pubmed/34261389
http://dx.doi.org/10.1177/00368504211031114
Descripción
Sumario:Sound quality (SQ) has become an important index to measure the competitiveness of motor products. To better evaluate and optimize SQ, a novelty SQ evaluation and prediction model of high-speed permanent magnet motor (HSPMM) with better accuracy is presented in this research. Six psychoacoustic parameters of A-weighted sound pressure level (ASPL), loudness, sharpness, roughness, fluctuation strength (FS), and perferred-frequency speech interference (PSIL) were adopted to objectively evaluate the SQ of HSPMM under multiple operating conditions and subjective evaluation was also conducted by the combination of semantic subdivision method and grade scoring method. The evaluation results show that the SQ is poor, which will have a certain impact on human psychology and physiology. The correlation between the objective evaluation parameters and the subjective scores is analyzed by coupling the subjective and objective evaluation results. The average error of multiple linear regression (MLR) model is 7.10%. It has good accuracy, but poor stability. In order to improve prediction accuracy, a new predicted model of radial basis function (RBF) artificial neural network was put forward based on genetic algorithm (GA) optimization. Compared with MLR, its average error rate is reduced by 3.16% and the standard deviation is reduced by 1.841. In addition, the weight of each objective parameter was analyzed. The new predicted model has a better accuracy. It can evaluate and optimize the SQ exactly. The research methods and conclusions of this paper can be extended to the evaluation, prediction, and optimization of SQ of other motors.